| 研究生: |
孟慶強 Qing-Qian Mon |
|---|---|
| 論文名稱: |
多孔質熱源於封閉區間兩側散熱之自然對流 |
| 指導教授: |
林孝宗
Shaw-Chong Lin |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 畢業學年度: | 88 |
| 語文別: | 中文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 自然對流 、多孔質 |
| 外文關鍵詞: | natural convection, porous medium |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文所探討的系統為一個等分為三層的矩形封閉區間,於上下兩層中填入發熱多孔質,而中間層及多孔質的間隙中填滿牛頓流體,在系統中的熱量僅能由側面散出的情況下,探討其自然對流的現象。多孔質區的流動是採用布瑞克曼-佛許海默-達西模式(Brinkman-Forchheimer-Darcy Model)。
本研究在數值方法上是以有限體積法來展開統制方程式,再以牛頓法配合虛擬弧長法,對系統的物理參數之連續變化進行分析以求得數值解。如此可瞭解系統的流場與溫度場以及重要物理量在選定的參數範圍內隨著參數值之增減而變化的情形。
由數值運算的結果可發現:傾斜角改變對於系統納賽數之影響程度,與系統中的雷立數有很大的關係,而雷立數的增加對於納賽數的增加亦有絕對的正效果。在一般情況下,納賽數與流動強度比皆會隨著長寬比的增加而降低。而達西數則與納賽數呈正比,與流動強度比呈反比。
1. A. Bejan, “Convection Heat Transfer” 2nd. Ed. , New York, John Wiley & Sons, 1995.
2. D. D. Joseph, D. A. Nield and G. Papanicolaou, “Nonlinear equation governing flow in a saturated porous medium”,Water Resources Res., Vol. 18, pp. 1049-1052, 1982.
3. S. Ostrach, “Natural convection in enclosure”, Adv. Heat Transfer, Vol. 8, pp.161-227, 1972.
4. I. Catton, “Natural convection in enclosures”, Proc. 6th Int. Heat Transfer Conference, Vol. 6, pp. 13-43, 1978.
5. A. Bejan, “A synthesis of analytical results for natural convection heat transfer across rectangular enclosures”, Int. J. Heat Mass Transfer, Vol. 23, pp. 723-726, 1980.
6. W. J. Sun, “Convection instability in superposed porous and fluid layers”, Ph.D. Dissertation, University of Minnesota. Minneapolis, MN, 1973.
7. C. W. Somerton and I. Catton, “On the thermal instability of superposed porous and fluid layers”, J. Heat Transfer, Vol. 104, pp. 160-165, 1982.
8. T. W. Tong and E. Subramanian, “Natural convection in rectangular encloures partially filled with a porous medium”, Proc. ASME-JSME Joint Conference in Thermal Engineering, pp. 331-338, 1983.
9. T. Nishimura, T. Takumi, M. Shiraishi, Y. Kawamura and H. Ozoe, “Experiments of natural convection heat transfer in rectangular enclosures partially filled with particles”, Kagaku Kogaku Ronbunshu, Vol. 11, pp. 405-410, 1985.
10. T. Nishimura, T. Takumi, M. Shiraishi, Y. Kawamura, and H. Ozoe, “Numerical analysis of natural convection in a rectangular enclosure horizontally divided into fluid and porous regions”, Int. J. Heat Mass Transfer, Vol. 29, pp. 889-898, 1986.
11. D. Poulikakos, “Bouyance-driven convection in a horizontal fluid layer extending over a porous substrate”, Physics Fluids, Vol. 29, pp. 3949-3957, 1987.
12. D. Poulikakos, “Thermal instability in a horizontal fluid layer superposed on a heat generating porous bed”, Numer. Heat Transfer, Vol. 12, 83-99, 1987.
13. C. Beckermann, S. Ramadhyani and R. Viskanta, “Natural convection flow and heat transfer between a fluid layer and porous layer inside a rectangular enclosure”, J. Heat Transfer, Vol. 109, pp. 363- 370, 1987.
14. C. Beckermann, R. Viskanta, and S. Ramadhyani, “Natural convection in vertical enclosures containing simultaneously fluid and porous layers”, J. Fluid Mech., Vol. 186, pp. 257-284, 1988.
15. S. J. Kim and C. Y. Choi, “Convective heat transfer in porous and overlying fluid layers heated from below”, Int. J. Heat Mass Transfer, Vol . 39, pp. 319-329, 1996.
16. M. Song and R. Viskanta, “Natural convection flow and heat transfer within a rectangular enclosure containing a vertical porous layer”, J. Heat Mass Transfer, Vol. 37, pp. 2425-2438, 1994.
1. 陳耀漢, “發熱多孔質在封閉區間中之多重穩態自然對流”,中央大學博士論文, 1997..
18. D. Gobin, B. Goyeau, J. P. Songbe, “Double diffusive natural convection in composite fluid-porous layer”, J. Heat Transfer, Vol. 120, pp. 234-242, 1998.
19. J. J. Jou , K. Y. Kung and C. H. Hsu, “Thermal stability of horizontally superposed porous and fluid layers in a rotating system”, Int. J. Heat Mass Transfer, Vol. 39, pp. 1847-1857, 1996.
20. G. Neale and W. Nader, “Practical significance of Brinkman extension of Darcy’s law : coupled parallel flows within a channel and a boundary porous medium”, Can. J. Chem. Engng, Vol. 52, pp. 472-478, 1974.
21. S. Patankar, “Numerical Heat Transfer and Fluid Flow”, New York, Hemisphere, 1980.
22. H. B. Keller, “Bifurcation and nonlinear eigenvalue problem”, Applications of Bifurcation Theory. (Ed. By P. H. Rabinowiz) Academic Press, pp. 359-384, 1977.
23. K. Vafai and C. L. Tien, “Boundary and inertia effects on flow and heat transfer in porous media”, Int. J. Heat Mass Transfer, Vol. 24, pp. 195-203, 1981.
24. T. S. Lundgren, “Slow flow through stationary random beds and suspensions of spheres”, J. Fluid Mech. Vol. 51, pp. 273-299, 1972.
25. Y. Saad, M. H. Schultz, “Gmres — A generalized minimal residual algorithm for solving non symmetric linear systems”, SIAM J. Sci. Stat. Comput. Vol. 7, pp. 856-869, 1