| 研究生: |
黃彥程 Yen-Cheng Huang |
|---|---|
| 論文名稱: |
不等長微型擠壓絲攻成型加工參數之實驗研究 |
| 指導教授: |
葉維磬
Wei-Ching Yeh 吳明昌 Ming-Chang Wu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 130 |
| 中文關鍵詞: | 擠壓絲攻 、最佳化 、中央合成設計 、變異數分析 |
| 外文關鍵詞: | form tap, optimization design, central composite design, analysis of variance |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文提出不等長無槽間距 (Unequal Fluteless Spacing, UFS)的概念設計M1.2微型擠壓絲攻。常見的擠壓絲攻具有四個等長的圓弧邊,而UFS擠壓絲攻則具有八個不等長的圓弧邊及四個等長的平直邊。UFS的概念能降低擠壓絲攻的加工扭矩並使其壽命提升,而為了探討其降低扭矩的效應,本文將UFS擠壓絲攻應用於內螺紋的加工實驗。實驗採用的UFS擠壓絲攻和工件材質分別為碳化鎢材質和7075-T651鋁合金。本文考慮的UFS擠壓絲攻加工製程參數(或稱品質因子)有下孔徑及主軸轉速以及潤滑液濃度,採用中央合成設計法規劃並進行實驗,建立攻牙最大扭矩和內螺紋飽牙率的迴歸模型,完成參數最佳化設計的目的。此外,本文亦探討前述加工製程參數對內螺紋成型之扭矩和內螺紋飽牙率的影響。最大扭矩和內螺紋飽牙率迴歸模型,為運用統計軟體Minitab對實驗結果進行統計和變異分析(ANOVA)而建立,且被應用於參數最佳化設計。本文以望小最大扭距為目標函數,內螺紋飽牙率為限制條件進行最佳化設計,以期獲得最佳化的內螺紋飽牙率與最大扭矩。此外,本文依據加工製程參數最佳化的結果進行實驗驗證,結果顯示前述迴歸模型具有良好的預測性。
This study proposes a conceptual design of M1.2 micro-form taps with Unequal Fluteless Spacing (UFS). The common form tap has four arc edges of equal length, while the UFS form tap has eight arc edges of unequal length and four straight edges of equal. The concept of UFS can reduce the processing torque of the form tap and increase its life. In order to explore the effect of reducing the torque, this study applies the UFS form tap to the processing experiment of internal threads. The UFS form tap and workpiece materials used in the experiment are tungsten carbide and aluminum alloy 7075-T651, respectively. The processing parameters (or control variables) of the UFS form tap considered in this study are the lower aperture, the speed of the rotation and the concentration of the lubrication. The central composite design method is used to plan and conduct experiments to establish the regression model of the maximum torque and the fill rate of the internal thread. The regression model is used to complete the purpose of parameter optimization design. In addition, this study also discusses the influence of the processing parameters on the torque of the internal thread forming and the fill rate of the internal thread. Regression models of maximum torque and the fill rate of the internal thread were established for statistical analysis and analysis of variance (ANOVA) of experimental results using the statistical software Minitab, and were used in the parameter optimization design. In this study, the objective function is to take the desired maximum torque as the objective function, and the fill rate of internal thread is the limiting condition to optimization design, in order to obtain the optimized fill rate of internal thread and maximum torque. In addition, this study conducts experimental verification based on the results of the processing parameters optimization design, and the results show that the regression model of maximum torque and the fill rate of the internal thread have good predictability.
[1] Agapiou, J. S., “Evaluation of the Effect of High Speed Machining on Tapping”, Journal of Engineering for Industry, Vol.116, pp. 457-462, 1994
[2] Ivanov, V.,Kirov, V.,“Rolling of Internal Threads: Part 1”, Journal of Materials Processing Technology, Vol.72, pp.214-220, 1997.
[3] Mezentsev O.A., DeVor R.E., Kapoor S. G., Prediction of thread quality by detection and estimation of tapping faults, Journal of Manufacturing Science and Engineering, Vol.124,pp.643-650, 2002.
[4] Cao T., Sutherland J. W., Investigation of thread tapping load characteristics through mechanistics modeling and experimentation, International Journal of Machine Tools & Manufacture, Vol.42, pp.1527-1538, 2002
[5] Chowdhary, S., Ozdoganlar, O. B., Kapoor, S., DeVor, R., “Modeling and Analysis of Internal Thread Forming”, Trans. NAMRC/SME, Vol.30, pp. 329-336, 2002.
[6] Chowdhary, S., DeVor, R.E., Kapoor, S.G., “Modeling Forces Including Elastic Recovery for Internal Thread Forming”, Journal of Manufacturing Science and Engineering, Vol.125, pp. 681-688, 2003.
[7] Warrington, C., Kapoor, S.G., DeVor, R.E., “Experimental Investigation of Thread Formation in Form Tapping”, Journal of Manufacturing Science and Engineering, Vol.127, pp. 829-836, 2005.
[8] 林永豪,超音波振動輔助攻牙之實驗設置與研究,國立台北科技大學,碩士論文,民國94年。
[9] Fromentin, G., Poulachon, G., Moisan, A., Julien, B., Giessler, J.,“Precision and Surface Integrity of Threads Obtained by Form Tapping”, Manufacturing Technology, CIRP Annals, Vol.54, pp. 519-522, 2005.
[10] Fromentin, G., Poulachon, G., Moisan, A., “An Experimental and Analytical Method for Investigating Plastic Flow in Form Tapping”, International Journal of Forming Processes, Vol.9, pp. 457-472, 2006.
[11] 黃鴻斌,追頻式超音波輔助攻牙之研究,國立台北科技大學,碩士論文,民國98年。
[12] Mathurin, F., Guillot, J., Stéphan, P., Daidié, A., “3D Finite Element Modeling of an Assembly Process with Thread Forming Screw”, Journal of Manufacturing Science and Engineering, Vol.131, pp. 151-158, 2009.
[13] Formentin, G., Bierla, A., Minfray, C., Poulachon, G., “An experimental study on the effects of lubrication in form tapping”, Tribology International, Vol. 43, pp.1726-1734, 2010.
[14] Stéphan, P., Mathurin, F., Guillot, J., “Analytical study of Maximal Tapping Torque during Forming Screw Process”, Journal Materials Processing Technology, Vol.211, pp. 212-221, 2011.
[15] Carvalho, A.O., Brandão, L.C., Panzera, T.H., Lauro, C.H., “Analysis of Form Threads Using Fluteless Taps in Cast Magnesium Alloy (AM60)”, Journal of Materials Processing Technology, Vol.212, pp. 1753-1760, 2012.
[16] Pereira, I.C., Faria, A.E., Da Silva, M.B., “Influence of Feed Rate and Threaded Length in Thread Forming and Tapping Operations”, Lecture Notes in Engineering and Computer Science, Vol.3, pp.1781-1784, 2013.
[17] 李永欽,微絲攻於 SUS304 攻牙之研究,大華科技大學,碩士論文,民國 103 年。
[18] Landeta, J. F., Valdivielso, A. F., L. N. López de Lacalle, Girot, F., J. M. Pérez Pérez, “Wear of Form Taps in Threading of Steel Cold Forged Parts”, Journal of Manufacturing Science and Engineering, Vol. 137, pp. 031002_1-0.31002_11,2015.
[19] Pereira, I. C., Da Silva, M. B., Da Cunha, D. F., “Analysis of tapping process in three types of cast iron”, International Journal of Advanced Manufacturing Technology, pp. 1041-1048, 2015.
[20] 周中偉,微型無屑螺絲攻之幾何特徵設計最佳化與刀具壽命研究,國立台灣科技大學,碩士論文,民國 105 年。
[21] Wiśniewska M., Pudłowski M.,Influence of unequal flute spacing on the nature of the mill’s work and technological effects of the process, Engineering and Technology Journal, Vol. 38, pp. 464-469, 2018.
[22] Oliveira, J., Filho, S., Brandão, L., “Investigation of the Influence of Coating and the Tapered Entry in the Internal Forming Tapping Process”, The International Journal of Advanced Manufacturing Technology, Vol.101, pp. 1051-1063, 2019.
[23] 簡威容,擠壓絲攻刀具幾何特徵之最佳化分析,國立中央大學,碩士論文,民國 109 年
[24] 曾暐智,微型擠壓絲攻成型實驗暨加工參數最佳化分析,國立中央大學,碩士論文,民國 110 年
[25] 林聖鈞,微型擠壓絲攻之幾何參數實驗設計與最佳化分析,國立中央大學,碩士論文,民國 110 年
[26] 星億實業股份有限公司 擠壓絲攻的下孔徑表。 取自http://www.sing-yi.com.tw/traditional/tanoi_technical1_11_1.php。
[27] 童超塵 反應曲面法-Minitab操作。 取自 https://reurl.cc/KbVQ6e。
[28] YAMAWA 擠壓絲攻:從基礎認識螺絲攻-擠壓絲攻篇。2017年2月17日,取自https://reurl.cc/Dd6eRj。
[29] 葉怡成,實驗設計法:製程與產品最佳化,一版,五南出版社,臺北市,民國90年6月