跳到主要內容

簡易檢索 / 詳目顯示

研究生: 詹正輝
Cheng-Hui Chan
論文名稱: 電潤濕動態行為探討
The dynamic behavior of electrowetting
指導教授: 曹恆光
Heng-Kwong Tsao
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 80
中文關鍵詞: 電潤濕石墨烯動態行為
外文關鍵詞: electrowetting, graphene, dynamic behavior
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探討影響電潤濕過程中的各種變因和動態行為。由李普曼楊氏方程式可知,電壓一直是影響電潤濕效應的重要因素,影響了最終角度變化量。然而電壓除了影響接觸角的變化量之外,也影響電潤濕效應的反應時間和過程的液滴形狀變化。另外除了電壓,還有一些因素會影響電潤濕效應,像是工作流體濃度、基材表面粗糙度和介電層厚度,這在以往的論文較少被討論。當工作流體濃度越高,相同電壓下電潤濕效應的接觸角變化量亦越大,而且也影響了電潤濕效應的反應時間,然而有一個有趣的情形被觀察到,當濃度增加到一定濃度之上,角度變化量就不會再提高,類似於電潤濕飽和接觸角,我們發現濃度和電壓一樣也會產生此現象。當超過某濃度,改變濃度只會帶來電潤濕效應反應時間的變化。表面粗糙度對電潤濕效應會產生影響,當表面的粗糙度越高,電潤濕效應會越不明顯,接觸角度變化量會越少。介電層厚度也深深影響了電潤濕效應,本文使用兩種介電層,分別是氧化石墨薄膜和不鏽鋼氧化層,當介電層厚度越厚,電潤濕效應也越不明顯,接觸角度變化量亦越少。透過對上述各項因素的探討,能更有效的操控電潤濕現象。


    The various parameters affect the dynamic behavior of electrowetting discussed in the study. From Lippman-Young's equation, the applied voltage is an important parameter affecting electrowetting. It affects the changes of contact angle. However, the applied voltage affects not only the changes of contact angle, but also the reaction time of electrowetting and the changes of drop shape. Besides the applied voltage, there are other parameters affecting electrowetting such as the concentration of working fluid、the roughness of substrate surface、the thickness of dielectric layer. These parameters were discussed less in previous studies.
    When the concentration of working fluid is increased, the changes of contact angle are larger under the same applied voltage, and the reaction time of elctrowetting is shorter. However, as the concentration is above the specific concentration, the changes of contact angle no longer change. The situation is similar to contact angle saturation induced by voltage. As the voltage is above the specific voltage, the changes of contact angle are the same. We call it saturation concentration (about 10 mM). The surface roughness also affects the electrowetting effect. With the increase of roughness, the electrowetting effect is insignificant, so the change of contact angle are smaller. At last, the thickness of dielectric layer strongly affects the electrowetting effects. Two dielectric materials are employed in this study. They are oxidation graphite films and oxidation steel films. The thicker the dielectric layer is, the more insignificant the electrowetting effect is. The changes of contact angle is smaller. Through the control of these parameters, the more effective manipulation is expected.

    第一章 緒論 1 1-1 電潤濕 1 1-2 電潤濕相關文獻回顧 3 1-3 石墨烯及氧化石墨 5 1-4 石墨烯的製備 7 1-5 研究動機與目的 9 第二章 理論背景 10 2-1 潤濕現象(Wetting phenomenon) 10 2-2 潤濕現象的定義 12 2-3 接觸角遲滯 16 2-4 電潤濕 24 2-5 潤濕現象的量測方式 28 2-6 電泳沉積 33 第三章 實驗介紹 34 3-1 實驗藥品及材料 34 3-2 實驗儀器介紹 34 3-3 實驗步驟 38 第四章 電潤濕動態行為之探討 41 4-1 電壓對動態電潤濕行為之影響 41 4-2 溶液濃度對動態電潤濕行為之影響 46 4-3 表面粗糙度對動態電潤濕行為之影響 48 4-4 厚度對動態電潤濕行為之影響 54 第五章 結論 62 第六章 參考文獻 63

    [1]T.A. Mcmahon, J.T. Bonner, On Size and Life, Scientific American Books, (1983).
    [2]G. Lippmann, “relations entre les ph´enom`enes ´electriques et capillaires” , Ann. Chim.Phys, 5, 494(1875).
    [3]A. Froumkine, “Actualités scientifiques et industrielles”, 373, 36(1936).
    [4]F. Mugele and J. Baret, “Electrowetting: from basics to applications”, J. Phys.: Condens. Matter, 17, 705-774(2005).
    [5]B.Berge, “Electrocapillarity and wetting of Insulator films by water”, Comptes rendusde l’Acad´emie desSciences, S´eriesII, 317, 157–163(1993).
    [6]H.J.J. Verheije and M.W.J. Prins, “Reversible electrowetting and trapping of charge: model and experiments”, Langmuir, 15, 6616-6620(1999).
    [7]W. J. J. Welters and L. G. J. Fokkink, “Fast Electrically Switchable Capillary Effects”, Langmuir, 14, 1535-1538(1998).
    [8]C. Decamps and J. De Coninck, “Dynamics of Spontaneous Spreading under Electrowetting Conditions”, Langmuir, 16, 10150-10153(2000).
    [9]R. Sedev and J. Ralston, “Influence of the Electrical Double Layer in Electrowetting”, J. Phys. Chem. B, 107, 1163-1169(2003).
    [10]H. Moon, S. K. Cho, R. L. Garrell and C. J. Kim, “Low Voltage Electrowetting-On-Dielectric”, J. Appl. Phys., 92,4080-4087(2002). 
    [11]J. Lee and C. J. Kim, “Liquid Micromotor Driven by Continuous Electrowetting”, Proc. IEEE Int. Conf. MEMS, 538-543(1998).
    [12]J. Lee, "Microactuation by Continuous Electrowetting and Electrowetting: Theory, Fabrication, and Demonstration", PhD Thesis, University of California(2000).
    [13]C. J. Kim, "Integrated Digital Microfluidic Circuits Operated by Electrowetting-on-Dielectrics (EWOD) Principle", BIOFLIPS Program Summary Book: DARPA/MTO Principle Investigators’ Meeting(Isle of Palms, SC, USA), 32-33(2001).
    [14]S. K. Cho, H. Moon and C.-J Kim, "Creating, Transporting, Cutting, and Merging Liquid Droplets by Electrowetting-Based Actuation for Digital Microfluidic Circuits", J. Microelectromech. Syst., 12, 70-80(2003).
    [15]B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: an application of electrowetting”, Eur. Phys. J. E, 3, 159(2000).
    [16]S. Kuiper and B. Hendriks, “Variable-focus liquid lens for miniature cameras”, Appl. Phys. Lett., 85, 1128(2004).
    [17]R. A. Hayes and B. J. Feenstra, “Video-speed electronic paper based on electrowetting”, Nature, 425, 383-385(2003).
    [18]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, “Electric field effect in atomically thin carbon films ”, Science, 306, 666 (2004).
    [19]W. S. Hummers Jr., R. E. Offeman, “Preparation of graphitic oxide”, Preparation of graphitic oxide, J. Am. Chem. Soc.,80, 1339 (1958).
    [20]Y. Xu and H. Bai., “Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets”, J. Am. Chem. Soc, 130, 5856 (2008).
    [21]F. Schedin, A. K. Geim et al. , “Detection of individual gas molecules adsorbed on graphene”, Nature materials, 6, 652 (2007).
    [22]C. Berger, Z.Song et al. , “Electronic confinement and coherence in patterned epitaxial graphene”, Science, 312, 1191 (2006).
    [23]G. Wang, B. Wang et al. , “Highly efficient and large-scale synthesis of graphene by electrolytic exfoliation”, Carbon, 47, 3242 (2009).
    [24]C. Y. Su, A. Y. Lu et al. , “High-Quality Thin Graphene Films from Fast Electrochemical Exfoliation”, ACS Nano, 5(3), 2332 (2011).
    [25]R. N. Wenzel, “ Resistance of solid surfaces to wetting by water”, Ind. Eng. Chem. Res., 28, 988(1936).
    [26]A. B. D. Cassie, S. Baxter, “Wettability of porous surface”, Trans. Faraday Soc. , 40, 546 (1944).
    [27]R. E. Johnson, R. H. Dettre et al. , “ Contact angle hysteresis. Contact angle, wettability, and adhesion”, Advances in Chemistry, 43, 112 (1964).
    [28]S. J. Hong, F. M. Chang et al. , “ Anomalous Contact Angle Hysteresis of a Captive Bubble: Advancing Contact Line Pinning” , Langmuir, 27, 6890 (2011).
    [29]R. Fürstner, W. Barthlott et al. , “Wetting and self-cleaning properties of artificial superhydrophobic surfaces ” ,Langmuir, 21, 956(2005).
    [30]蕭慕柔, “電解剝落法之石墨表面性質探討”, 國立中央大化學工程與材料工程研究所碩士論文(2012)
    [31]L. Feng, Y Zhang et al. , “Petal effect: a superhydrophobic state with high adhesive force ”, Langmuir, 24, 4114 (2008).
    [32]F. M. Chang, S. J. Hong et al., “High contact angle hysteresis of superhydrophobic surfaces: Hydrophobic defects ”, Appl. Phys. Lett. , 95, 06410 (2009).
    [33]E. Rame, “The interpretation of dynamic contact angles measured by the Wilhelmy plate method ”, J. Colloid Interface Sci. , 185, 245 (1997).

    QR CODE
    :::