跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林維恩
Wei-En Lin
論文名稱: Characterizing single-qubit gate fidelity on superconducting qubits
超導電路單量子位元邏輯閘效度之表徵
指導教授: 陳永富
Yung-Fu Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 146
中文關鍵詞: transmon 量子位元量子非破獲性讀取量子邏輯閘效度量子過程斷層掃描隨機基準分析
外文關鍵詞: quantum non-demolition readout, gate fidelity, quantum process tomography, randomized benchmarking
相關次數: 點閱:6下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們在超導電路系統研究原子與光的相互作用。在我們實驗室,我們製造量子超導電路,例如在一維傳輸線共振器嵌入一個小芯片的transmon 量子位元。為了獲取量子位元之系統的特性,列如共振器頻率、量子位元躍遷頻率和量子位元與共振器之耦合強度,我們藉由量子非波壞性(QND) 讀取,在強色散的區域下進行頻譜實驗。基於頻譜實驗的結果,我們利用微波脈衝序列進行單一量子位元狀態之控制實驗。最近,我們專注於單量子位元邏輯閘效度的研究。我們採取兩種方法估計邏輯閘的效度:量子過程斷層掃描和隨機基準分析。當邏輯閘的長度增加,由於量子位元的去同調性,我們發現從量子過程斷層掃描得到的效度會降低。對於20 微秒之X 跟Y 閘,藉由量子過程斷層掃描的方法,我們得到了平均邏輯閘效度約為88.58% 跟87.16%;利用隨機基準分析的方法,我們估計的平均邏輯閘效度約為97.49% 跟97.38%。由於量子過程斷層掃描的方法多估計了狀態準備以及測量上的錯誤,因此它的平均邏輯閘效度比隨機基準分析估計的還要小。


    In our lab, we fabricate the quantum superconducting circuit such as the single transmon qubit embedded in a one-dimensional transmission line resonator on the small chip.
    To obtain the characteristics of superconducting qubit system, such as the resonant frequency of a resonator, qubit transition frequency, and qubit-resonator coupling strength,
    we perform spectroscopy experiments in strong dispersive regime. Based on the characteristics of the system, we carry out various qubit state control experiments with microwave
    pulse sequences. Recently, we focus on investigations of single qubit gate fidelity. We estimate gate fidelity based on two metrics: quantum process tomography (QPT), and randomized benchmarking (RB). When the gate length increases, we find that the fidelity from the QPT decrease due to the qubit decoherence effect. For 20 ns X and Y gates, we obtain the average gate fidelity 88.58% and 87.16% by the QPT ; we also estimate the average gate fidelity 97.49% and 97.38% by the RB. The fidelity via the QPT is smaller than that of the RB due to the over-estimated errors from the state preparation and measurement errors.

    摘要ix Abstract xi Contents xiii 1 Introduction 1 1.1 Cavity Quantum Electrodynamics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Circuit Quantum Electrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 Cavity quantum electrodynamics 3 2.1 The Jaynes-Cummings model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 Strong coupling limit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 Dispersive limit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.4 The coherent drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3 Superconducting qubit and circuit QED 15 3.1 The quantization of the transmission line resonator . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 Josephson junction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.3 Cooper pair box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.4 Transmon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.4.1 Charge dispersion of transmon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.4.2 The Josephson oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.5 Transmon coupling with coplanar waveguide resonator . . . . . . . . . . . . . . . . . . . . . . 28 3.5.1 The generalized Jaynes-Cummings Hamiltonian. . . . . . . . . . . . . . . . . . . . . . 29 3.5.2 Dispersive regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314 Simulation of qubit spectroscopy 35 4.1 Qubit decoherence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4.1.1 Density matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4.1.2 Bloch sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.1.3 Bloch Redfield model for decoherence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.1.4 Master equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.2 One tone spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.2.1 Flux-dependent spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.2.2 Vacuum Rabi supersplitting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.2.3 Cavity power dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.3 Two tone spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.3.1 Dispersive readout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.3.2 Overlapped CW spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.3.3 Separated pulse spectroscopy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5 Simulation of quantum gate operation 65 5.1 Optical Bloch equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 5.2 Rabi oscillation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 5.2.1 Time and power Rabi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.3 Measurements for decoherence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5.3.1 T1 relaxation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 5.3.2 Ramsey experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 5.3.3 Spin echo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 5.4 Fidelity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 5.4.1 Gate fidelity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 5.4.2 Quantum process tomography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 5.4.3 Randomized Benchmarking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 6 Experimental setup and results 99 6.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 6.1.1 Superconducting circuit design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 6.1.2 Measurement setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 6.1.3 Homodyne demodulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 6.2 Measurement results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 6.2.1 One tone spectroscopy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 6.2.2 Two tone spectroscopy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 6.2.3 Rabi oscillation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 6.2.4 Power and time Rabi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 6.2.5 T1 relaxation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 6.2.6 Ramsey fringe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 6.2.7 Spin echo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 6.2.8 Quantum process tomography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 6.2.9 Randomized Benchmarking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 7 Conclusion and future work 121 bibliography 123

    [1] M. Scheucher, “Toward a quantum switch for light,” Ph.D. dissertation, 2013.
    [2] D. I. Schuster, Circuit quantum electrodynamics. Yale University, 2007.
    [3] A. Blais, J. Gambetta, A. Wallraff, et al., “Quantum-information processing with circuit
    quantum electrodynamics,” Physical Review A, vol. 75, no. 3, p. 032 329, 2007.
    [4] D. Arweiler, “Multi-squid josephson parametric amplifiers,” 2018.
    [5] A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, “Cavity quantum
    electrodynamics for superconducting electrical circuits: An architecture for quantum
    computation,” Physical Review A, vol. 69, no. 6, p. 062 320, 2004.
    [6] J. Koch, M. Y. Terri, J. Gambetta, et al., “Charge-insensitive qubit design derived from
    the cooper pair box,” Physical Review A, vol. 76, no. 4, p. 042 319, 2007.
    [7] P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson, and W. D. Oliver, “A
    quantum engineer’s guide to superconducting qubits,” Applied Physics Reviews, vol. 6,
    no. 2, p. 021 318, 2019.
    [8] C. A. Brasil, F. F. Fanchini, and R. d. J. Napolitano, “A simple derivation of the lindblad
    equation,” Revista Brasileira de Ensino de Fı́sica, vol. 35, no. 1, pp. 01–09, 2013.
    [9] L. S. Bishop, J. Chow, J. Koch, et al., “Nonlinear response of the vacuum rabi resonance,”
    Nature Physics, vol. 5, no. 2, pp. 105–109, 2009.
    [10] P. Carbonaro, G. Compagno, and F. Persico, “Canonical dressing of atoms by intense
    radiation fields,” Physics Letters A, vol. 73, no. 2, pp. 97–99, 1979.
    [11] L. S. Bishop, E. Ginossar, and S. Girvin, “Response of the strongly driven jaynes-cummings
    oscillator,” Physical review letters, vol. 105, no. 10, p. 100 505, 2010.
    [12] M. Reed, L. DiCarlo, B. Johnson, et al., “High-fidelity readout in circuit quantum electrodynamics
    using the jaynes-cummings nonlinearity,” Physical review letters, vol. 105,
    no. 17, p. 173 601, 2010.
    [13] J. Gambetta, A. Blais, D. I. Schuster, et al., “Qubit-photon interactions in a cavity:
    Measurement-induced dephasing and number splitting,” Physical Review A, vol. 74, no. 4,
    p. 042 318, 2006.
    [14] D. Schuster, A. A. Houck, J. Schreier, et al., “Resolving photon number states in a superconducting
    circuit,” Nature, vol. 445, no. 7127, pp. 515–518, 2007.
    [15] A. Abragam, The principles of nuclear magnetism, 32. Oxford university press, 1961.
    [16] K. Júlı́usson, “Quantum zeno dynamics in 3d circuit-qed,” Ph.D. dissertation, Université
    Pierre et Marie Curie-Paris VI, 2016.
    [17] I. L. Chuang and M. A. Nielsen, “Prescription for experimental determination of the
    dynamics of a quantum black box,” Journal of Modern Optics, vol. 44, no. 11-12, pp. 2455–
    2467, 1997.
    [18] J. Chow, J. M. Gambetta, L. Tornberg, et al., “Randomized benchmarking and process
    tomography for gate errors in a solid-state qubit,” Physical review letters, vol. 102, no. 9,
    p. 090 502, 2009.
    [19] M. A. Nielsen, “A simple formula for the average gate fidelity of a quantum dynamical
    operation,” Physics Letters A, vol. 303, no. 4, pp. 249–252, 2002.
    [20] J. L. O’Brien, G. Pryde, A. Gilchrist, et al., “Quantum process tomography of a controllednot
    gate,” Physical review letters, vol. 93, no. 8, p. 080 502, 2004.
    [21] M. D. Bowdrey, D. K. Oi, A. J. Short, K. Banaszek, and J. A. Jones, “Fidelity of single
    qubit maps,” Physics Letters A, vol. 294, no. 5-6, pp. 258–260, Mar. 2002.
    [22] M. Horodecki, P. Horodecki, and R. Horodecki, “General teleportation channel, singlet
    fraction, and quasidistillation,” Physical Review A, vol. 60, no. 3, p. 1888, 1999.
    [23] M. Laforest, “Error characterization and quantum control benchmarking in liquid state
    nmr using quantum information processing techniques,” 2008.
    [24] J. Emerson, R. Alicki, and K. Życzkowski, “Scalable noise estimation with random unitary
    operators,” Journal of Optics B: Quantum and Semiclassical Optics, vol. 7, no. 10, S347,
    2005.
    [25] E. Magesan, “Characterizing noise in quantum systems,” 2012.
    [26] E. Magesan, J. M. Gambetta, B. R. Johnson, et al., “Efficient measurement of quantum
    gate error by interleaved randomized benchmarking,” Physical review letters, vol. 109,
    no. 8, p. 080 505, 2012.
    [27] E. Magesan, J. Gambetta, and J. Emerson, “Robust randomized benchmarking of quantum
    processes,” arXiv preprint arXiv:1009.3639,

    QR CODE
    :::