| 研究生: |
謝瑋霖 Wei-Lin Hsueh |
|---|---|
| 論文名稱: |
適用於數位電視之里德所羅門編解碼硬體實作 Reed-Solomon Decoder Hardware Implementation for Digital Video Broadcasting Standard for Terrestrial Transmission(DVB-T) Channel Coding |
| 指導教授: |
陳逸民
Yih-Min Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 通訊工程學系 Department of Communication Engineering |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 數位電視通道編碼 、里德所羅門碼 、硬體實作 |
| 外文關鍵詞: | DVB-T, Reed-Solomon Coding |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在廣播系統中,很多數位訊號的應用都利用直接錯誤更正碼,它是將多餘的資訊加上原本訊號,以利於被通道干擾之訊號能偵測並更正。在多種錯誤更正碼被發展出來中,以編碼效率及硬體複雜度而言,里德所羅門碼被證實是較好的錯誤更正碼。至今,里德所羅門碼以在廣播系統中被廣泛使用,如在ETSI數位地面電視廣播系統(DVB-T)標準的通道編碼規格,RS(204,188,8) 。
本論文主要是針對數位地面電視廣播系統標準的通道編碼規格來作硬體實現。以Verilog硬體描述語言,並透過Modelsim軟體進行模擬,確認我們的RS(204,188,8)程式可更正錯誤後,在利用合成軟體Synplify合成RTL硬體。
Many digital signaling applications in broadcasting use Forward Error Correction, a technique in which redundant information is added to the signal to allow the receiver to detect and correct errors that may have occurred in transmission. Many different types of code have been devised for this purpose, but Reed-Solomon codes have proved to be a good compromise between efficiency and complexity. Reed-Solomon error correction has several applications in broadcasting, in particular forming part of the specification for the ETSI digital terrestrial television standard, known as DVB-T.
In this thesis, we applied the specification for the ETSI digital terrestrial television standard(DVB-T) to realize the hardware implementation of Reed-Solomon decoder. Using Verilog Hardware Description Language and simulating by software “Modelsim” to confirm our program of RS(204,188,8) are fine and can correct errors which result from bad channel. Then, synthesizing logic-RTL by Synplify.
[1] Lee, J.S.; Sunwoo, M.H.; Oh, S.K.,“Design of DSP instructions and their hardware architecture for a Reed-Solomon codec,” IEEE Signal Processing Systems., pp.103 – 108, Oct. 2002.
[2] ESTI, “Digital Video Broadcasting (DVB); Framing Structure,Channel Coding and Modulation for Digital Terrestrial Television”, European Telecommunication Standard EN300744 v1.4.1, 2001
[3] C.K.P. Clarke, “Reed-Solomon error correction,”BBC R&D White Paper, WHP 031,July 2002.
[4] Martin Bossert, “Channel Coding for Telecommunications”. John Wiley & Sons Ltd, 1999.
[5] E.M. Popovici, P. Fitzpatrick, “Reed-Solomon Codes for Optical Communications”. Microelectronics, 2002. MIEL 2002. 23rd International Conference on, Volume: 2, 2002. pp.613 – 616.
[6] H. Lee, “An Area-Efficient Euclidean Algorithm Block for Reed-Solomon Decoder”. VLSI, 2003. Proceedings. IEEE Computer Society Annual Symposium on , 2003. pp. 209 –210.
[7] E. Berlekamp, “Algebraic Coding Theory”. New York: McGraw-Hill 1968.
[8] Robert J. McEliece, “Finite Fields for Computer Scientists and Engineers”. Kluwer Academic Publishers, 1987.
[9] Sergei V. Fedorenko and Peter V. Trifonov, “ Finding Roots of Polynomials Over Finite Fields,” IEEE Transactions on Communications, Vol. 50, No. 11, pp. 1709-1711, November 2002.
[10] S. Lin, D. J. Costello, Jr., “Error Control Coding: Fundamentals and Applications”, Prentice-Hill, 1983.
[11] E. R. Berlekamp, “Bit-Serial Reed-Solomon Encoders,” IEEE Trans. Inform. Theory, vol. IT-28, no. 6, pp. 869-874, Nov. 1982.
[12] H. M. Shao, T. K. Truong, L. J. Deutsch, J. H. Yuen, and I. S. Reed, “A VLSI Design of a Pipeline Reed-Solomon Decoder,” IEEE Transactions on Computers., vol. C-34, no. 5, pp. 393-402, May 1985.
[13] C. C. Wang, T. K. Truong, H. M. Shao, L. J. Deutsch, J. K. Omura, and I. S. Reed, “VLSI Architectures for Computing Multiplications and Inverses in GF(2m),” IEEE Transactions on Computers., vol. C-34, no. 8, pp. 709-716, Aug. 1985.
[14] S.T.J. Fenn, M. Benaissa, and D. Taylor, “GF(2m) multiplication and division over the dual basis,” IEEE Trans. Comput., vol. 45, no. 3, pp. 319-327, March 1996.
[15] R. Furness, M. Benaissa, S.T.J. Fenn, “GF(2m) multiplication over triangular basis for design of Reed-Solomon codes,” Computers and Digital Techniques, IEE Proceedings- , vol. 145 issue 6 , pp. 437 -443, Nov 1998
[16] Wicker and Bhargava, “Reed-Solomon Codes and Their Applications,” IEEE Press, 1994.
[17] I.S. Reed and G. Solomon, “Polynomial Codes over Certain Finite Fields, ” J. Soc. Ind. Apple. Math. 8,pp. 200-204, June 1860.
[18] Stephen B. Wicker, “Error Control Systems for Digital Communication and Storage,” Prentice Hall, 1995.
[19] G. Fettweis, M. Hassner, “A Combine Reed-Solomon Encoder and Syndrome Generator with Small Hardware Complexity,” Circuits and Systems, ISCAS 92 Proceedings, vol. 4, pp. 1871-1874, 1992.
[20] R. Blahut, “Theory and Practice of Error Control Codes,” Addison-Wesley Co., 1983.
[21] S. Choomchuay and B. Arambepola, “Time domain algorithms and architectures for Reed-Solomon decoding,” Proc. Inst. Elect. Eng. I, Commun., Speed and Vis., vol. 140, pp. 189-196, June 1993.
[22] Research on Reed-Solomon Decoder—Design and Implementation
張錫嘉 國立交通大學電子工程學係電子研究所博士論文, 2000
[23] Study on a SIP Synthesizer of Reed-Solomon Decoder Using a Fast Root Searching Circuit
黃柏涵 國立交通大學電機與控制工程研究所碩士論文, 2001