跳到主要內容

簡易檢索 / 詳目顯示

研究生: 劉子凡
Tzu-Fan Liu
論文名稱: 電漿輔助原子層沉積法鍍製抗反射膜於微型塑膠透鏡
Plasma Enhanced Atomic Layer Deposition of Antireflection coatings on Micro plastic lens
指導教授: 郭倩丞
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 91
中文關鍵詞: 電漿輔助原子沉積抗反射膜
外文關鍵詞: Plasma Enhanced Atomic Layer Deposition, Antireflection coating
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來半導體產業的快速發展對線寬的要求越來越小,原子層沉積
    技術因具有極佳的均勻性和保形性,隨即快速發展,應用領域也越來
    越廣泛。
    在光學方面的應用,隨著光學設計架構越來越複雜,出現了越來越
    多的自由曲面或是微結構的透鏡,來取代光學元件的件數,而這些微
    結構的光學元件在製造時使用成本較低的塑膠(如 PMMA、PC、Zeonex)
    替代玻璃。
    本實驗使用電漿輔助原子層沉積法鍍製,探討了單層膜在 60℃製程
    下折射率與消光係數在不同功率和時間下的趨勢,也分析前驅物在
    60℃製程下的反應性,並使用 X 射線光電子能譜儀分析薄膜中殘留的
    碳、氮比例,推測其雜質是否影響光學性質。將不同參數的抗反射膜
    鍍製於塑膠基板上測試其附著性與是否膜裂,最後鍍製於微型塑膠透
    鏡上,並使用顯微鏡光譜儀量測透鏡各點在波段 420nm 到 680nm 抗反
    射光譜圖及均勻性,平均反射率約為 0.78%。


    In recent years, due to the rapid development of the semiconductor
    industry, the requirements for line width have become lesser. Atomic Layer
    Deposition technology developed rapidly because of its excellent
    uniformity and shape retention.
    In optical applications, as the optical design structure becomes more
    complex, more Freeform surface or structured lenses have appeared to
    replace of optical components. In order to reduce costs during
    manufacturing, plastic substrates (such as PMMA, PC, Zeonex) are used
    instead of glass.
    In this experiment, plasma-enhanced atomic layer deposition method
    was used. The trend of refractive index and extinction coefficient of
    single-layer film under 60℃ process with different power and process time
    was discussed. The reactivity of the precursors at 60℃ was also analyzed.
    The use of XPS to analyze the residual carbon and nitrogen ratio in the
    film to infer whether its impurities affect the optical properties. The
    anti-reflection (AR) coating with different parameters is deposited on the
    plastic substrates to test its adhesion and film cracking.
    Finally, the AR film coated on the micro plastic lens is used to
    measure the anti-reflection spectrum and uniformity of each point of the
    lens in the wavelength range of 420 nm to 680 nm with an optical
    microscope spectrometer. The average reflectance is about 0.78%.

    目錄 摘要................................................i Abstract...........................................ii 致謝................................................iii 目錄................................................iv 圖目錄..............................................vii 表目錄............................................. X 第一章 緒論........................................ 1 1-1 前言.......................................... 1 1-2 研究目的與動機................................. 5 1-3 本文架構...................................... 6 第二章 基礎理論與文獻回顧........................... 7 2-1 原子層沉積技術工作原理 ......................... 7 2-1-1 化學氣相沉積法 .............................. 7 2-1-2 原子層沉積 ................................. 8 2-1-3 電漿輔助原子沉積系統(Plasma Enhanced ALD).... 14 2-2 光學薄膜理論.................................. 19 2-2-1 光學導納(Optical admittance)............... 21 2-2-2 多層抗反射膜設計 ........................... 22 2-3 塑膠鍍膜之問題................................ 23 2-4 文獻探討...................................... 26 第三章 實驗方法與使用儀器設備....................... 32 3-1 實驗方法...................................... 32 3-1-1 實驗流程 ................................... 32 3-1-2 實驗步驟 ................................... 33 3-2 製程設備原理與條件 ............................ 36 3-2-1 原子層沉積系統 .............................. 36 3-3 量測儀器介紹與原理 ............................ 41 3-3-1 紫外光/可見光/近紅外光光譜儀.................. 41 3-3-2 橢圓偏振儀 ................................. 43 3-3-3 掃描式電子顯微鏡 ............................ 45 3-3-4 X 射線光電子能譜儀 .......................... 45 3-3-5 光學顯微鏡光譜儀 ............................ 48 第四章 實驗結果與討論.............................. 49 4-1 不同材料之單層膜實驗........................... 49 4-1-1 單層膜之材料選擇 ............................ 49 4-1-2 單層膜之光學特性分析.......................... 50 4-1-3 雜質對光學特性的影響.......................... 57 4-2 多層抗反射膜結果 ............................... 61 4-2-1 塑膠基板的附著性與膜裂......................... 61 4-2-2 光學特性與均勻性 ............................. 67 第五章 結論........................................ 70 參考文獻........................................... 71

    [1] 2018/2019 年產業技術白皮書,環境篇,經濟部技術處,2018.
    [2] 2018/2019 年產業技術白皮書,產業篇,經濟部技術處,2018.
    [3] Edmund Optics:微透鏡陣列
    取自:https://www.edmundoptics.com.tw/f/Microlens-Arrays/13812/
    [4] B. Aitchison, M.l J. Cumbo, Optical Design and Fabrication (Freeform,
    IODC, OFT), FTh3B.5, Denver, Colorado United States, 9–13 July
    2017.
    [5] 李正中, 薄膜光學與鍍膜技術, 第八版藝軒圖書, 2016
    [6] I. Iatsunskyi, M. Kempinski, M. Jancelewicz, K. Załeski, S. Jurga, V.
    Smyntyna, Vacuum ,113, 52-58, 2015.
    [7] H. Song , L. Guo , Z. Liu , K. Liu , X. Zeng , D. Ji , N. Zhang , H.g Hu ,
    S. Jiang , and Q. Gan, Adv. Mater., 26, 2737–2743, 2014.
    [8] Y. J. Choia, S. C. Gonga, D. C. Johnson, S. Golledge, G. Y. Yeomc, H.
    H. Parka, Applied Surface Science, 269, 92– 97, 2013.
    [9] M. Crne, V. Sharma, J. Blair, J. O. Park, C. J. Summers and
    M.Srinivasarao, EPL, 93, 14001, 2011.
    [10] S. Seppälä, “Atomic Layer Deposition of Zirconium Oxide and
    Rare Earth Oxides from Heteroleptic Precursors” ,2019.
    [11] F. Hirose, Y. Kinoshita, K. Kanomata, K. Momiyama, S. Kubota, K.
    Hirahara, et al., “IR study of fundamental chemical reactions in
    atomic layer deposition of HfO2 with tetrakis (ethylmethylamino)
    hafnium (TEMAH), ozone, and water vapor ” Applied Surface
    Science, vol. 258, pp. 7726-7731, 2012
    72
    [12] 陳建維,等“應用於原子層沉積之臨場量測技術, ” 科儀新知, pp.
    47-57, 2017.
    [13] I. Langmuir, “Oscillations in ionized gases, ” Proceedings of the
    National Academy of Sciences of the United States of America, vol.
    14, p. 627, 1928.
    [14] http://140.117.153.69/ctdr/files/573_1151.pdf
    [15] P. Schindler, M. Logar, J. Provine, and F. B. Prinz, “Enhanced step
    coverage of TiO2 deposited on high aspect ratio surfaces by
    plasma-enhanced atomic layer deposition,” Langmuir, vol. 31, pp.
    5057-5062, 2015
    [16] S. Heil, J. Van Hemmen, C. Hodson, N. Singh, J. Klootwijk, F.
    Roozeboom, et al., “Deposition of TiN and Hf O 2 in a commercial
    200 mm remote plasma atomic layer deposition reactor, ” Journal of
    Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.
    25, pp. 1357-1366, 2007.
    [17] H. Profijt, S. Potts, M. Van de Sanden, and W. Kessels,
    “Plasma-assisted atomic layer deposition: basics, opportunities, and
    challenges, ” Journal of Vacuum Science & Technology A: Vacuum,
    Surfaces, and Films, vol. 29, p. 050801, 2011
    [18] CM CHEN, POLYMER surface modification and characterization
    Hanser Pub 1993
    [19] P. Munzert, U. Schulz and N. Kaiser, Plasma Proc. Polym. 4, 1036,
    2007.
    [20] J. E. Klemberg‐ Sapieha, L. Martinu, N. L. S. Yamasaki, C. W.
    Lantman, Thin Solid Films 476, 101,2005.
    73
    [21] Wilson CA, Grubbs RK, George SM. Chem Mater 17:5625–34,2005.
    [22] Ferguson JD, Weimer AW, George SM. Chem Mater ,16:5509–602,
    2004.
    [23] M. Kemell, E. Färm, M. Ritala, and M. Leskelä, “Surface
    modification of thermoplastics by atomic layer deposition of Al2O3
    and TiO2 thin films, ” European polymer journal, vol. 44, pp.
    3564-3570, 2008
    [24] T. O. Kääriäinen, D. C. Cameron, and M. Tanttari, “Adhesion of Ti
    and TiC coatings on PMMA subject to plasma treatment: effect of
    intermediate layers of Al2O3 and TiO2 deposited by atomic layer
    deposition, ” Plasma Processes and Polymers, vol. 6, pp. 631-641,
    2009
    [25] V. Teixeira, “Mechanical integrity in PVD coatings due to the
    presence of residual stresses, ” Thin solid films, vol. 392, pp. 276-281,
    2001.
    [26] G. N. Strauss, N. Q. Danh, and H. Pulker, “Mechanical stress in thin
    SiO2 and Ta2O5 films produced by reactive-low-voltage-ion-plating
    (RLVIP), ” Journal of non-crystalline solids, vol. 218, pp. 256-261,
    1997.
    [27] U. Schulz, “Review of modern techniques to generate antireflective
    properties on thermoplastic polymers, ” Applied optics, vol. 45, pp.
    1608-1618, 2006.
    [28] J. Strong, “On a method of decreasing the reflection from nonmetallic
    substances, ” JOSA, vol. 26, pp. 73-74, 1936.
    [29] K. Pfeiffer, U. Schulz, A. Tünnermann, and A. Szeghalmi,
    “Antireflection coatings for strongly curved glass lenses by atomic
    74
    layer deposition, ” Coatings, vol. 7, p. 118, 2017.
    [30] S. Ratzsch, E.-B. Kley, A. Tünnermann, and A. Szeghalmi,
    “Influence of the oxygen plasma parameters on the atomic layer
    deposition of titanium dioxide, ” Nanotechnology, vol. 26, p. 024003,
    2014.
    [31] O. M. Ylivaara, L. Kilpi, X. Liu, S. Sintonen, S. Ali, M. Laitinen, et
    al., “Aluminum oxide/titanium dioxide nanolaminates grown by
    atomic layer deposition: Growth and mechanical properties, ” Journal
    of Vacuum Science & Technology A: Vacuum, Surfaces, and Films,
    vol. 35, p. 01B105, 2017.
    [32] P. Paul, K. Pfeiffer, and A. Szeghalmi, “Antireflection Coating on
    PMMA Substrates by Atomic Layer Deposition, ” Coatings, vol. 10,
    p. 64, 2020.
    [33] K. Pfeiffer, L. Ghazaryan, U. Schulz, and A. Szeghalmi,
    “Wide-angle broadband antireflection coatings prepared by atomic
    layer deposition, ” ACS applied materials & interfaces, vol. 11, pp.
    21887-21894, 2019.
    [34] U. Schulz, P. Munzert, and N. Kaiser, “Surface modification of
    PMMA by DC glow discharge and microwave plasma treatment for
    the improvement of coating adhesion, ” Surface and Coatings
    Technology, vol. 142, pp. 507-511, 2001.
    [35] P. Munzert, U. Schulz, and N. Kaiser, “Method for the vacuum
    deposition of optical coatings on polymethyl methacrylate, ” Plasma
    Processes and Polymers, vol. 4, pp. S1036-S1040, 2007.
    [36] Q.-Y. Cai, L.-S. Gao, H.-H. Luo, R. Cong, and D.-Q. Liu, “UV
    Broadband Antireflection Coating Using Al2O3, HfO2 and SiO2
    75
    Multilayer by Atomic Layer Deposition, ” in Optical Interference
    Coatings, 2019, p. FB. 5.
    [37] S. K. Gurram, Atomic Layer Deposition of Zinc Based Transparent
    Conductive Oxides: BoD–Books on Demand, 2017
    [38]X-ray photoelectron spectroscopy. Available:
    https://zh.wikipedia.org/wiki/X-ray_photoelectron_spectroscopy
    [39] S. A. Rushworth, L. Smith, A. J. Kingsley, R. Odedra, R. Nickson,
    and P. Hughes, “Vapour pressure measurement of low volatility
    precursors, ” Microelectronics Reliability, vol. 45, pp. 1000-1002,
    2005.
    [40] W. Maeng and H. Kim, “Thermal and plasma-enhanced ALD of Ta
    and Ti oxide thin films from alkylamide precursors, ”
    Electrochemical and Solid State Letters, vol. 9, p. G191, 2006.
    [41] Q. Xie, Y.-L. Jiang, C. Detavernier, D. Deduytsche, R. L. Van
    Meirhaeghe, G.-P. Ru, et al., “Atomic layer deposition of Ti O 2
    from tetrakis-dimethyl-amido titanium or Ti isopropoxide precursors
    and H 2 O, ” Journal of applied physics, vol. 102, p. 083521, 2007.
    [42] J. Elam, C. Nelson, R. Grubbs, and S. George, “Nucleation and
    growth during tungsten atomic layer deposition on SiO2 surfaces, ”
    Thin Solid Films, vol. 386, pp. 41-52, 2001.
    [43] H. S. Kim, H. J. Kim, H. S. Kim, Y. K. Jeong, S. H. Kim, S. W. Lee,
    et al., “Improvement of Luminescent Properties of Phosphor
    Powders coated with nanoscaled SiO2 by Atomic Layer Deposition, ”
    in Solid State Phenomena, pp. 375-378,2007.
    [44] K. Endo, Y. Ishikawa, T. Matsukawa, Y. Liu, K. Sakamoto, J. Tsukada,
    et al., “Atomic layer deposition of SiO2 for the performance
    76
    enhancement of fin field effect transistors, ” Japanese Journal of
    Applied Physics, vol. 52, p. 116503, 2013.
    [45] B. Burton, S. Kang, S. Rhee, and S. George, “SiO2 atomic layer
    deposition using tris (dimethylamino) silane and hydrogen peroxide
    studied by in situ transmission FTIR spectroscopy, ” The Journal of
    Physical Chemistry C, vol. 113, pp. 8249-8257, 2009.
    [46] M.-J. Choi, H.-H. Park, D. S. Jeong, J. H. Kim, J.-S. Kim, and S. K.
    Kim, “Atomic layer deposition of HfO2 thin films using H2O2 as
    oxidant, ” Applied surface science, vol. 301, pp. 451-455, 2014.
    [47] J. C. Hackley and T. Gougousi, “Properties of atomic layer deposited
    HfO2 thin films, ” Thin Solid Films, vol. 517, pp. 6576-6583, 2009.
    [48] L. Nyns, A. Delabie, J. Swerts, S. Van Elshocht, and S. De Gendt,
    “ALD and parasitic growth characteristics of the
    tetrakisethylmethylamino hafnium (TEMAH)/H2O process, ” Journal
    of The Electrochemical Society, vol. 157, p. G225, 2010.
    [49] L. Han and Z. Chen, “High-quality thin SiO2 films grown by atomic
    layer deposition using tris (dimethylamino) silane (TDMAS) and
    ozone, ” ECS Journal of Solid State Science and Technology, vol. 2,
    p. N228, 2013.
    [50] Y. Wei, Q. Xu, Z. Wang, Z. Liu, F. Pan, Q. Zhang, et al., “Growth
    properties and optical properties for HfO2 thin films deposited by
    atomic layer deposition, ” Journal of Alloys and Compounds , vol.
    735, pp. 1422-1426, 2018.

    QR CODE
    :::