| 研究生: |
張文賓 Wen-Bin Zhang |
|---|---|
| 論文名稱: |
藥劑配比對不同水膠比鹼活化爐碴膠結材料性質之影響 |
| 指導教授: |
黃偉慶
Wei-Hsing Huang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 154 |
| 中文關鍵詞: | 電弧爐還原碴 、鹼活化技術 、混合爐碴膠結材料 |
| 外文關鍵詞: | arc furnace ladle slag, alkali activation, blended furnace slag, bonding materials |
| 相關次數: | 點閱:21 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究將還原碴與水淬爐石粉摻配作為鹼活化膠結材料,並利用氫氧化鈉溶液及矽酸鈉溶液(水玻璃)激發爐碴膠結活性,一方面探討鹼活化爐石粉膠結材料在不同含鹼當量、鹼模數比及水膠比下,對其新拌及硬固性質之影響,另一方面則利用不同比例之還原碴取代水淬爐石粉降低鹼活化膠結材料之成本,探討鹼活化混合爐碴之成本效益,以利於鹼活化技術實際應用與推廣。
試驗結果顯示:(1)含鹼當量高於3%會使凝結時間縮短,提高鹼模數比則可增加漿體之流動性;(2)鹼活化水淬爐石砂漿於含鹼當量4%及鹼模數比1.00時,抗壓強度可優於水泥砂漿之抗壓強度;而提高鹼活化劑濃度對砂漿之抗壓強度發展愈好;(3)還原碴取代水淬爐石粉20%、含鹼當量4%,鹼模數比1.00、水膠比0.5時,抗壓強度高於對照組,但取代量愈高則強度相對下降;(4)降低水膠比至0.4時,還原碴取代量35%之抗壓強度則可達到對照組之水準;(5)經由成本效益分析得知,降低水膠比或是摻配適量還原碴,將可增加鹼活化爐碴之適用性範圍,作為替代水泥之膠結材料。
This study used the mixture of EAF ladle slag and blast furnace slag (BFS) as bonding materials for concrete. Sodium hydroxide and sodium silicate were used as alkali activator to activate the blended powder of slags. First, experimental works considering different dosages of activators, moduli silicate, and water-cement ratio were conducted to investigate the effects of various combinations of parameters on the fresh and hardened properties of alkali activated paste. Then, to reduce the cost of the bonding materials, similar experimental works were conducted on blended furnace slags and the engineering performance was evaluated in detail. Finally, an assessment on the cost benefit of alkali activated blended furnace slags was presented.
Experimental results show that: (1) For the fresh properties, the initial and finial setting times of alkali activated slag paste reduce as dosages of activator increase, and increase in moduli silicate improves the flowability of the activated paste. (2) At alkali dosages of 4% or higher, alkali-activated slag as the binder of concrete shows higher compressive strength than Portland cement. (3) When the replacement ratio of BFS by ladle slag was at 20%, the blended slag can be used as binder for producing mortar with favorable 28-day compressive strength. (4) The replacement level by ladle slag in the blended slag can be increased to 35%, as the water-cement ratio is reduced to 0.4, and still exhibits beneficial properties. (5) The results of cost benefit analysis indicated that reducing the water-cement ratio or using appropriate amounts of ladle slag could increase the application of alkali activated furnace. On the other hand, it can replace cement as bonding material.
行政院公共工程委員會,(2001),「公共工程高爐石混凝土使用手冊」。
余耀騰、林平全、施延照、黃兆龍、蔡敏行,(2001),「電弧爐煉鋼還原碴資源化應用技術手冊」,中技社綠色技術發展中心,台中。
李宜桃,(2002),「鹼活化還原碴漿體收縮及抑制方法之研究」,國立中央大學土木工程研究所碩士學位論文,中壢。
吳明富,(2013),「還原碴-高爐石作為混合膠結材之應用」 ,國立中央大學土木工程研究所碩士論文,中壢。
林怡忻,(2014)「混合礦碴作為混凝土膠結材料之成效評估」,國立中央大學土木工程研究所碩士論文,中壢。
林湧昱,(2012)「以電弧爐還原碴製成複合無機聚合物之研究」,國立中央大學土木工程研究所碩士論文,中壢。
郭硯華,(2007),「以鹼活化技術資源化電弧爐煉鋼還原碴之研究」,國立中央大學土木工程研究所碩士論文,中壢。
陳冠宇,(2010),「鹼激發爐石基膠體配比因子對其工程性質影響之研究」,碩士論文,國立台灣科技大學,台北。
經濟部工業局,(2001),「電弧爐煉鋼還原碴資源化應用技術手冊」。
蒲心誠,楊長輝,(1994),「高強鹼爐渣流態混凝土土研究」,混凝土, pp.18-30。
蕭遠智,(2002),「鹼活化電弧爐還原碴漿體之水化反應特性」,國立中央大學土木工程研究所碩士學位論文,中壢。
鐘文煥,(2010),「爐碴細粒料應用於製作鹼活化還原碴混凝土可行性研究」,國立中央大學土木工程研究所碩士論文,中壢。
Bakharev T., Sanjayan J.G., and Cheng, Y. B.(1999), “ Alkali activation of Australian slag cement.” Cement and Concrete Research, 29(1), 113-120.
Collins, F.G., and Sanjayan, J. G.(1999), “ Workability and mechanical properties of alkali activated slag concrete.” Cement and Concrete Research, 29(3), pp. 455-458.
Glasser, F.P. (1990). “Cements from micro to macrostructure.Br.” Ceram. Trans. J, 89 (6), 192–202.
Gaboriaud, F., Nonat, A., Chaumont, D., and Craievich, A.(1999), “Aggregation and gel formation in basic silico-calco-alkaline solutions studied: a SAXS, SANS, and ELS study.” J. Phys. Chem. B, 103, 5775-5781.
Huanhai, Z., Xuequan, W., Zhongzi, X., and Mingshu, T. (1993), “Kinetic study on hydration of alkali-activated slag . ” Cement and Concrete Research 23(7), 1253-1253.
Hobbs, D.W.(1998), Alkali-Silica Reaction in Concrete, Thomas Telford, London.
Jimenez A.F., Palomo J.G., and Puertas F.(1999), “ Alkali-activated slag mortars mechanical strength behavior.” Cement and Concrete Research, 29, 1313-1321.
Kantro, D.L.,(1980) “Influence of water-reducing admixtures on properties of cement paste – a miniature slump test. ” Materials and Structures, 2(2), 95-108.
Krizan, D., and Zivanovic, B., (2002) “ Effects of dosage and modulus of water glass on early hydration of alkali-slag cement.” Cement and Concrete Research, 32 (7), 1181-1188.
Krivenkoa, P., Drochytkab, R., Geleveraa, A., and Kavalerovaa, E. (2014). “Mechanism of preventing the alkali–aggregate reaction in alkali activated cement concretes.” Cement and Concrete Composites, 45, 157-165.
Luckman, M., Satish, V, and D, V. (2009) “ Cementitious and pozzolanic behavior of electric arc furnace steel Slags.” Cement and Concrete Research, 39(2), 102-109.
Leemann, A., Le Saout, G., Winnefeld, F., Rentsch, D., and Lothenbach, B.(2011) “Alkali–silica reaction: the influence of calcium on silica dissolution and the formation of reaction products. ” J. Am. Ceram. Soc., 94 (4), 1243-1249.
Mehta, P.K.(1986). Concrete Structure , Properties , and Materials .Prentice-Hall. Inc., Englewood Cliffs, New Jersey, U.S.A.
Monish, U. (2014). “Manufacturing processes at rail wheel factory.” M. S. Ramaiah institute of technology, Yelananka, Bangalore.
Puertas, F., Varga, C., and Alonso, M.M., (2014). “Rheology of alkali-activated slag pastes. Effect of the nature and concentration of the activating solution ” Cement and Concrete Composites, 53, 279-288.
Shi, C., and Day R. L.(1996), “ Some factors affecting early hydration of alkali-slag cement.” Cement and Concrete Research, 26(3), 439-447.
Song, S., and Jennings H. M.(1999), “ Pore solution chemistry of alkali-activated ground granulated blast-furnace slag.” Cement and Concrete Research, 29(2), 159-170.
Shi, C, Day RL (2001). “ Comparison of different methods for enhancing reactivity of pozzolans.” Cement and Concrete Research, 31(5), 813-818.
Shi, C. (2004). “ Steel slag—its production, processing, characteristics, and cementitious properties.” J. Mater. Civ. Eng., 16(3), 230-236.
Shi, C., Krivenko, P. V., Roy, D. (2006). “ Alkali-activated cements and concretes.” Taylor & Francis, New York.
Shi, Z., Shi, C., Zhao, R., and Wan, S. (2015). “Comparison of alkali–silica reactions in alkali-activated slag and Portland cement mortars. ” Materials and Structures, 48(3), 743-751.
Wang, S. D., Scrivener, K. L., and Pratt, P. L., (1994) “ Factors affecting the strength of alkali-activated slag. ” Cement and Concrete Research 24(6)﹐1033-1043.
Tang, M. (1973). “ Investigation of mineral composition of steel slag for cement.” Production. Research Report, Nanjing Institute of Chemical, Technology, Nanjing, China.