跳到主要內容

簡易檢索 / 詳目顯示

研究生: 唐瑋
Wei Tang
論文名稱: Ti/Fe比與合金元素(Mn,Ni)對於Ti-Fe儲氫合金吸放氫特性之影響
Effect of the Ti/Fe ratio and element M(M=Mn,Ni)substitution on hydrogen storage properties of Ti-Fe alloys
指導教授: 李勝隆
Sheng-long Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 98
語文別: 中文
論文頁數: 68
中文關鍵詞: 儲氫合金β-Ti相Ti-Fe合金
外文關鍵詞: β-Ti phase, Hydrogen storage material, Ti-Fe alloys
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以真空電弧熔煉法製備TixFe(1-y)My(M=Mn,Ni)系列合金,藉由微結構觀察與儲氫特性測量,探討不同Ti/Fe比與合金元素Mn、Ni對於儲氫性質之影響。結果顯示提升Ti/Fe比可改善合金活化特性與儲氫量,Ti1.1Fe的有效放氫量為1.54 wt%,是Ti-Fe二元合金中有效放氫量最佳之組成。當Mn的添加不超過12wt%時,有助於提升Ti1.1Fe(1-x)Mnx合金活化特性與有效放氫量。其Ti1.1Fe0.75Mn0.25合金有效放氫量為1.54 wt%。Ti1.1Fe0.75Mn0.25合金隨Ni含量增加,合金中各項儲氫性質皆下降。以活化特性、動力學性質、有效放氫量與遲滯行為各項儲氫特性作比較,Ti1.1Fe0.75Mn0.25為此一系列合金最佳成分。


    This research plans to utilize arc-melted method to prepare TixFe(1-y)My (M=Mn,Ni) alloys,and then studies the effect of the Ti/Fe ratio and element M(M=Mn,Ni) substitution on Ti-Fe alloys of hydrogen storage properties with different microstructure.It was found that increasing of Ti/Fe ratio could improve activation characteristics and effective hydrogen content.The best effective hydrogen storage capacity of Ti-Fe binary is 1.54wt% and its composition is Ti1.1Fe.The activation characteristics and hydrogen desorption capacity was improved when Mn contained less than 12 wt%. The best effective hydrogen storage capacity of Ti1.1Fe0.75Mn0.25 alloy is 1.54 wt%.The hydrogenation properties got worse with increasing of Ni content in Ti1.1Fe0.75Mn0.25 alloy. In consideration of activation properties, kinetics, effective capacity and hysteresis characteristics, Ti1.1Fe0.75Mn0.25 alloy is the best composition in this study.

    一、前言與文獻回顧……………………………………………………1 1-1 儲氫合金發展簡介……………………………………………1 1-2 儲氫合金種類…………………………………………………2 1-3 儲氫合金吸放氫特性…………………………………………3 1-3-1 吸放氫動力學性質……………………………………3 1-3-2 熱力學性質……………………………………………4 1-4 Ti系列儲氫合金簡介…………………………………………8 1-4-1合金元素對鈦基儲氫合金吸放氫平台性質之影響…8 1-4-2鈦基AB型TiFe儲氫合金………………………………9 1-4-3 Laves相AB2型TiM2儲氫合金………………………12 1-4-4 BCC固溶型TiV2 儲氫合金…………………………13 1-5 研究背景與目的……………………………………………16 二、實驗方法與步驟…………………………………………………18 2-1實驗方法與流程………………………………………………18 2-2儲氫合金置備流程……………………………………………19 2-3感應耦合電漿質譜儀(Inductively coupled plasma- mass spectrometry)成分分析……………………………20 2-4 X光粉末繞射分析……………………………………………21 2-5微結構分析……………………………………………………21 2-4-1 金相觀察 (OM)………………………………………21 2-4-2 電子微探儀分析 (EPMA)……………………………21 2-6合金儲放氫特性測試…………………………………………22 2-7熱程控脫附儀分析(TPD)……………………………………22 三、結果與討論………………………………………………………23 3-1 不同Ti/Fe比對於TiFe合金吸放氫性質之研究……………23 3-1-1 合金結構分析………………………………………23 3-1-2 儲放氫特性分析……………………………………27 3-1-2-1 活化測試……………………………………27 3-1-2-2吸放氫動力學測試…………………………29 3-1-2-3 PCI曲線量測………………………………32 3-1-3 熱程控脫附儀分析…………………………………34 3-2 Mn含量對於TiFe合金吸放氫性質之研究…………………37 3-2-1 合金結構分析………………………………………37 3-2-2 合金儲放氫性質測試………………………………40 3-2-2-1 活化測試……………………………………40 3-2-2-2 吸放氫動力學測試…………………………41 3-2-2-3 PCI曲線測試………………………………43 3-3 Ni含量對於TiFe合金吸放氫性質之研究…………………45 3-3-1 合金結構分析………………………………………45 3-3-2 合金儲放氫性質測試………………………………48 3-3-2-1 吸氫動力學測試……………………………48 3-3-2-2 PCI曲線測試………………………………50 四、結論………………………………………………………………52 五、未來工作…………………………………………………………53 六、參考文獻…………………………………………………………54

    [1] A.James, D.Armin, Jun Wang,“lmplementing a hydrogen economy”,materialstoday, pp1367, 2003
    [2] T. Graham, “On the Relation of Hydrogen to Palladium”, J. Franklin Inst., Vol.87, pp.256-266, 1869.
    [3] J.J. Reilly, R.H. Wiswall, “Reaction of Hydrogen with Alloys of
    Magnesium and Nickel and the Formation of Mg2NiH4”, Inorg. Chem, Vol.7, pp.2254-2256, 1968.
    [4] J.J. Reilly, R.H. Wiswall, “Formation and Properties of Iron Titanium
    Hydride”, Inorg. Chem., Vol.13, pp.218-222, 1974.
    [5] J.H.N. Vucht, F.A. Kuijpers, H.C.A.M. Bruning, “Reversible
    Room-Temperature Absorption of Large Quantities of Hydrogen by Intermetallic Compounds”, Philips Res. Repts., Vol.25, pp.133-140, 1970.
    [6] 胡子龍,“儲氫材料” , 化學工業出版社, pp. 135-136 , 2002
    [7] Louis Schlapbach, Andreas Zuttel, “Hydrogen-storage materials for mobile applications” , Nature, Vol. 414, pp. 353-358 , 2001
    [8] M.Martin, C.Gommel, C.Borkhart, E.Fromm, “Absorption and Desorption Kinetics of Hydrogen Storage Alloys”, J. Alloys Comp., Vol.238, pp.193-201, 1996.
    [9] Anaba Anani, Arnaldo Visintin, Konstantin Petrov, Supramaniam Srinivasan, “Alloys for hydrogen storage in nickel/hydrogen and nickel/metal hydride batteries”, J. Power Sources, Vol.47, pp.261-275, 1994.
    [10] A. Zuttel, “Materials for hydrogen storage”, Materials Today, Vol.6 pp.24-33, 2003.
    [11] Gary Sandrock, “A panoramic overview of hydrogen storage alloys from a gas reaction point of view”, J. Alloys Comp., Vol.293-295, pp.877-888, 1999.
    [12] K. Aoki, M. Kamachi, T. Masumoto, “Thermodynamics of Hydrogen Absorption in Amorphous Zr-Ni Alloys”, Journal of Non-Crystalline Solids, Vol.61-62, pp.679-684, 1984.
    [13] V.K.Sinha,W.E. Wallace, “The hyperstoichiometric ZrMn1+xFe1+y−H2 system II: Hysteresis effect”, J. Less-Common Met., Vol.91, pp.239-249, 1983.
    [14] K. Hong, “The development of hydrogen storage alloys and the progress of nickel hydride batteries” J. Power Sources .Vol. 147, pp. 85-89 , 2001
    [15] X.H. Wang, Y.Y. Beia, “Investigation on high-pressure metal hydride hydrogen compressors” J. Hydrogen Energy,Vol. 32, Issue 16, , pp. 4011-40152007
    [16] J. G Park, H. Y Jang, S. C Han, Paul S. Lee, J. Y Lee“ The
    thermodynamic properties of Ti–Zr–Cr–Mn Laves phase alloys” J.Alloy Comp, Vol. 325, Issues 1-2, pp. 293-298, 2001
    [17] Bin-Hong Liu, Dong-Myung Kim, Ki-Young Lee“Hydrogen storage
    properties of TiMn2-based alloys”, J.Alloy Comp, Vol. 240 , pp.214-218 ,1996
    [18] Xiumei GUO,Erdong WU, “Hydrogen storage properties of
    Laves phase Ti1-xZrx(Mn0.5Cr0.5)2 alloys”, Rare Metal, Vol.25 ,pp.218-223, 2006
    [19] N. Rajalakshmi1, K. S. Dhathathreyan, “Hydrogen solubility
    properties of Ti0.42Zr0.08Fe0.50 alloy”, Int. J. Hydrogen Energy, Vol. 24, Issue 7, pp, 625-629, 1991
    [20] J.R. Ares, F. Cuevas , A. Percheron-Guégan,“Mechanical milling and
    subsequent annealing effects on the microstructural and hydrogenation properties of multisubstituted LaNi5 alloy” Acta Materialia, Vol.53, Issue 7, pp. 2157-2167, April 2005
    [21] S. -M. Lee and T. -P. Perng, “Correlation of substitutional solid solution with hydrogenation properties of TiFe1-xMx (M=Ni, Co, Al) alloys”J.Alloy Comp. Vol. 291, pp. 254-261 , 1999
    [22] T.H. Jang, J.I. Han, “Effect of substitution of titanium by zirconium in TiFe on hydrogenation properties” J. Less-Common Met., Vol. 119, pp.237-246, 1986
    [23] X. Wang, R.Chen, “hydrogen storage properties of TixFe+y wt.% La and its use in metal hydride hydrogen compressor” J.Alloy Comp. Vol. 425, pp. 291-295 , 2006
    [24] S. -M. Lee and T. -P. Perng, “Microstructures and hydrogenation properties of TiFe1-xMx alloys”J.Alloy Comp. Vol. 182, pp. 47-59 , 1992
    [25] S. -M. Lee and T. -P. Perng, “Microstructures correlations with the hydrogenation kinetics of FeTi1+x alloys”J.Alloy Comp. Vol. 177, pp. 107-118 , 1991
    [26] S. -M. Lee, T. -P. Perng, “Effects of boron and carbon on the hydrogenation properties of TiFe and Ti1.1Fe” Int. J. Hydrogen Energy, Vol. 25, pp.831-836,2000
    [27] S. -M. Lee and T. -P. Perng, “Effect of the second phase on the initiation of hydrogenation of TiFe1-xMx (M=Cr,Mn)alloys” Int. J. Hydrogen Energy, Vol. 19, pp.259-263, 1994
    [28] H. Nagai, K. Kitagaki, “Microstructure and hydriding characteristics if FeTi alloys containing manganese” J. Less-Common Met., Vol. 134, pp.257-286, 1987
    [29] G. Bruzzone, G.Costa,“Hydrogen storage in aluminium-substituted TiFe compounds”, Int. J. Hydrogen Energy, Vol. 6, Issue 7, pp. 181-184, 1980
    [30] H. Miyamura, M. Takada,“Metal hydride electrodes using titanium-iron-based alloys”J.Alloy Comp. pp. 755-758 , 2003
    [31] Klyamkin S. N, Verbetsky V. N “Thermodynamics of hydride
    formation and decomposition for TiMn2-H2 system at pressure up to 2000 atm”J.Less-common Met, Vol.205, L1, 1994
    [32] B. K. Singh, A. K. Singh, A. M. Imam, O. N. Srivastava, “On the
    Structural Characteristics and Hydrogenation Behaviour of TiMn1.5 Hydrogen Storage Material”, Int. J. Hydrogen Energy, Vol.26, pp.817-821, 2001.
    [33] Y. Moriwaki, T. Gamo, T. Iwaki, “Control of hydrogen equilibrium pressure for C14-type laves phase alloys”, J. Less-Common Met., Vol. 172, pp.1028-1035, 1991.
    [34] Y. Kojima, Y. Kawai, “Development of metal hydride with high dissociation pressure ”J.Alloy Comp. Vol. 419, pp. 256-261 , 2006
    [35] J.L. Bobet and B. Darriet,“Relationship between hydrogen sorption
    properties and crystallography for TiMn2 based alloys ” Int. J. Hydrogen Energy , Vol. 25, pp. 767–772, 2000
    [36] M. Au, F. Pourarian, S.G. Sankar, W.E. Wallace L.Zhang, “TiMn2-
    based alloys as high hydrogen storage materials ” Mater. Sci. Eng. B33 ,1995
    [37] P. Raj, A. Satyamoorthy, “Hydriding behaviour of FeTi and FeTi1.5: Ease of activation and skipping of β region” J. Less-Common Met., Vol. 130, pp.139-145, 1987
    [38] J.G. Park, H.Y. Jang, S.C. Han, “The thermodynamic properties of Ti–Zr–Cr–Mn Laves phase alloys” J.Alloy Comp. Vol. 325, pp. 293-298 , 2001
    [39] E. Akiba, H. Iba, “Hydrogen absorption by Laves phase related BCC solid solution” , Intermetallics, Vol.6, pp.461-470, 1998
    [40] J.J. Reilly, R.H. Wiswall, “Higher hydrides of vanadium and niobium” Inorg.Chem., Vol. 9, pp.1678-1682, 1970
    [41] S.Ono, K. Noura, “The reaction of hydrogen with alloys of vanadium and titanium” J. Less-Common Met., Vol. 72, pp.159-165, 1980
    [42] S.W. Cho, S.C. Han, “The hydrogen storage characteristics of Ti–V–Cr alloys” J.Alloy Comp. Vol. 288, pp. 294-298 , 1999
    [43] X.B. Yu, Z.Wu, N.X. Xu, “Enhancemant of hydrogen storage capacity of Ti-V-Mn-Cr BCC phase alloys” J.Alloy Comp. Vol. 372, pp. 272-277 , 2004
    [44] Y.Yan, Y. Chen, H. Liang, “Hydrogen storage properties of V30-Ti–Cr–Mn alloys” J.Alloy Comp. Vol. 427, pp. 110-114 , 2007
    [45] Y.Yan, Y. Chen, H. Liang, “Effect of Al content on hydrogen storage properties of V30Ti35Cr35Fe10 alloys” J.Alloy Comp. Vol. 426, pp. 253-255 , 2006
    [46] X.B. Yu, J.Z.Chen, N.X. Xu, “Effect of Cr content on hydrogen storage properties for Ti-V-Based BCC-phase alloys” Int.J.Hydrogen Energy. Vol. 29, pp. 1377-1381, 2004
    [47] R.Guo, L,X,Chen, Y.Q.Lei, Q.D.Wang, “Phase structures and electrochemical behaviors of V2.1TiN0.5Hf0.05Crx (x=0-0.152) hydrogen storage alloys” J.Alloy Comp. Vol. 426, pp. 253-255 , 2006
    [48] C.Y.Seo, J.H.Kim, P.S.Lee, J.Y.Lee, “Hydrogen storage properties of vanadium-based b.c.c solid solution metal hydrides” J.Alloy Comp. Vol. 348, pp. 252-257 , 2003
    [49] K. P. Gupta, “The Fe-Ni-Ti system update (Iron-Nickel-Titanium)” J. Phase Equilibria and Diffusion. Vol. 22, pp. 171-175 , 2001
    [50] N. Yasuda, R. Wakabayashi, “Self-ignition combustion synthesis of TiFe1-xMnx hydrogen storage alloy” Int.J.Hydrogen Energy. Vol. 34, pp. 9122-9127, 2009
    [51] N. Yasuda, R. Wakabayashi, “Self-ignition combustion synthesis of TiFe1-xNix hydrogen storage alloy” J.Alloy Comp.. Vol. 484, pp.682-688, 2009
    [52]T. Tamura, Y.Tominaga, “Alloying effects on the stability of vanadium hydrides” J.Alloy Comp.. Vol. 330-332, pp.105-109, 2002
    [53]H. Yukawa, M.Takagi, “Protium absorption properties of Ti-V-Cr-Mn alloys with a b.c.c strucure” J.Alloy Comp.Vol. 330-332, pp.522-525, 2002

    QR CODE
    :::