| 研究生: |
陳企甫 Chi-fu Chen |
|---|---|
| 論文名稱: |
磷化銦與絕緣體上矽材料輻射性質之研究 Investigation of Radiative Properties for InP and SOI |
| 指導教授: |
曾重仁
Chung-jen Tseng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 磷化銦 、絕緣體上矽 、輻射性質 、快速熱製程 、半導體 |
| 外文關鍵詞: | InP, SOI, radiative properties, RTP, semiconductor |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究運用傅立葉轉換紅外線光譜儀 (FT-IR spectrometer) 搭配高溫穿透及反射腔體,量測數種不同摻雜的磷化銦(InP)晶圓與氧離子佈植隔離(Separation by Implantation of Oxygen, SIMOX)絕緣體上矽(Silicon on Insulator, SOI)晶圓,波長分別由0.8μm(InP)與0.7μm(SOI)到19μm,溫度由室溫分別到700℃(InP)與800℃(SOI)之輻射性質。目的在建立InP與SOI於溫升狀態下之光學常數數值,以補足過去文獻中,僅有常溫下數據,不敷高溫熱處理製程使用之缺憾。此外,本文中所分別計算出與量測得到的溫升狀態下之InP總放射率(total emissivity)及SIMOX SOI的穿透、反射等輻射性質也是文獻上首次出現。並且經由介紹快速熱處理製程(Rapid Thermal Processing, RTP),了解材料之輻射性質在溫度量測上所扮演的重要角色。本實驗經由量測InP與SOI晶圓於溫升時所表現的表觀(apparent)穿透率和反射率,以熱輻射和電磁波理論所提供關係,計算出相關的輻射性質,並分別與Palik [1](InP)之數值及Georgia Institute of Technology之Lee and Zhang的模擬軟體Rad-Pro v1.2 [2](SOI)進行比較,以相互驗證數據之正確性。
In this work, we measured several InP wafers with different doping and Separation by Implantation of Oxygen (SIMOX) Silicon on Insulator (SOI) wafer by using Fourier Transform Infrared (FT-IR) spectrometer with a high temperature transmittance and reflectance cell, respectively. The measurement can be performed in the temperature range from room temperature to 700℃ for InP and 800℃ for SOI respectively over a wide spectral range from 0.8μm for InP and 0.7μm for SOI to 19μm. Due to the lacks of empirical or experimental data of InP and SOI wafers at elevated temperature at present, they are simultaneously measured and analysis in the present study. Furthermore, the total emissivity of InP and the reflectance and transmittance of SIMOX SOI wafers at elevated temperatures is firstly reported in this paper. The other related radiative properties are also simultaneously deduced by optical models. And using the data from Palik’s handbook[1] for InP and the simulation software Rad-Pro v1.2 of Lee and Zhang[2] for SOI to validate the current experimental measurement.
〔1〕 Palik, E. D. (Eds.), Handbook of Optical Constants of Solids, New York, Academic Press, 1985.
〔2〕 http://www.me.gatech.edu/~zzhang/Rad_Pro.htm
〔3〕 http://www.stt.org.tw/tw/manufacturer.asp
〔4〕 半導體科技雜誌,第30期,2002年8月。
〔5〕 Herzinger, C. M., Snyder, P. G., Johs, B., Woollam, J. A., “InP Optical Constants Between 0.75 and 5.0 eV Determined by Variable-angle Spectroscopic Ellipsometry,” Journal of Applied Physics, Vol. 77, no. 4, pp. 1715-1724, 1995.
〔6〕 陳啟文和陳韋旗,「絕緣層上矽分析及應用」,明新學報,32期,103-115頁,2006年8月。
〔7〕 吳志宏等,「SOI晶圓之發展現況與應用」,機械工業雜誌,257期,93-101頁。
〔8〕 Adachi, S., Physical Properties of III-V Semiconductor Compounds : InP, InAs, GaAs, GaP, InGaAs, and InGaAsP, Wiley, 1992.
〔9〕 Cardona, M., “Optical Studies of the Band Structure of InP,” Journal of Applied Physics, Vol. 32, no. 5, pp. 958, 1961.
〔10〕 Cardona, M., “Infrared Dielectric Constant and Ultraviolet Optical Properties of Solids with Diamond, Zinc Blende, Wurtzite, and Rocksalt Structure,” Journal of Applied Physics, Vol. 36, no. 7, pp. 2181-2186, 1965.
〔11〕 Aspnes, D. E., and Studna, A. A., “Dielectric Functions and Optical Parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Physical Review B, Vol. 27, Issue 2, pp. 985-1009, 1983.
〔12〕 Pettit, G. D., and Turner, W. J., “Refractive Index of InP,” Journal of Applied Physics, Vol. 36, no. 6, pp. 2081, 1965.
〔13〕 Newman, R., “Optical Properties of n-Type InP,” Physical Review, Vol. 111, Issue 6, pp. 1518-1521, 1958.
〔14〕 Pikhtin, A. N., and Yas''kov, A. D., “Dispersion of the Refractive Index in Semiconductors With Diamond and Zinc-Blend Structures,” Soviet Physics-Semiconductors, Vol. 12, no. 6, pp. 622-626, June 1978.
〔15〕 Reynolds, W. N., Lilburne, M. T., and Dell, R. M., “Some Properties of Semiconducting Indium Phosphide,” Proceedings of the Physical Society, Vol. 71, pp. 416-421, 1958.
〔16〕 Koteles, E. S., and Datars, W. R., “Two-phonon Absorption in GaAs and InP,” Solid State Communications, Vol. 19,Issue 3, pp. 221-225, 1976.
〔17〕 Jamshidi, H., and Parker, T. J., “The Far Infrared Optical Properties of InP at 6 and 300 K,” International Journal of Infrared and Millimeter Waves, Vol. 4, pp. 1037-1044, 1983.
〔18〕 Bairamov, B. H., Ipatova, I. P., Milorava, V. A., Toporov, V. V., Naukkarinen, K., Tuomi, T., Irmer, G., and Monecke, J., “Theoretical and Experimental Study of Raman Scattering and Infrared Reflectivity in Indium Phosphide,” Physical Review B, Vol. 38, Issue 8, pp. 5722-5725, 1988.
〔19〕 Lautenschlager, P., Garriga, M., and Cardona, M., “Temperature Dependence of the Interband Critical-point Parameters of InP,” Physical Review B, Vol. 36, Issue 9, pp. 4813-4820, 1987.
〔20〕 Whalen, M. S., and Stone, J., “Index of Refraction of n-type InP at 0.633- and 1.15-µm Wavelengths as a Function of Carrier Concentration,” Journal of Applied Physics, Vol. 53, Issue 6, pp. 4340-4343, 1982.
〔21〕 Stone, J., and Whalen, M. S., “Index of Refraction Dispersion of n- and p-type InP Between 0.95 and 2.0 eV,” Applied Physics Letters, Vol. 41, Issue 12, pp. 1140-1142, 1982.
〔22〕 Ravindra, N.M., Abedrabbo, S., Gokce, O. H., Tong, F., Patel, A., Velagapudi, R., Williamson, G. D., Maszara, W. P., “Radiative Properties of SIMOX,” IEEE Transactions on components, packaging, and manufacturing technology-part A, Vol. 21, No. 3, pp. 441-449, 1998.
〔23〕 Modest, M. F., Radiative Heat Transfer, 2nd ed., Academic Press, New York, 2003.
〔24〕 Cheng, D. K., Field and Wave Electromagnetics, 2nd ed., Addison-Wesley, 1996.
〔25〕 Ravindra, N. M., Abedrabbo, S., Chen, W., Tong, F. M., Nanda, A. K., and Speranza, A. C., “Temperature-Dependent Emissivity of Silicon-Related Materials and Structures,” IEEE Trans on Semiconductor Manufacturing, Vol. 11, no. 1, pp. 30-39, 1998.
〔26〕 Zhang, Z. M., Fu, C. J., and Zhu, Q. Z., “Optical and Thermal Radiative Properties of Semiconductors Related to Micro/Nanotechnology,” Advances in Heat Transfer, Vol. 37, pp. 179-296, 2003.
〔27〕 Kittel, C., Introduction to Solid State Physics, 7th ed., New York, Wiley, 1996.
〔28〕 Cohen, M. L., and Chelikowsky, J. R., Electronic Structure and Optical Properties of Semiconductors, 1st ed., Berlin, Springer-Verlag, 1988.
〔29〕 Pankove, J. I., Optical Processes in Semiconductors, Dover Publications, New York, 1971.
〔30〕 Press, W. H., Flannery, B. P., Teukolsky, S. A., Vetterling, W. T., Numerical Recipes, Cambridge University Press, 1986.
〔31〕 Yeh, P., Optical Waves in Layered Media, Wiley, New York, 1988.
〔32〕 Toscano, W. M. and Cravalho, E. G., “Thermal Radiation Properties of the Noble Metals at Cryogenic Temperatures,” Journal of Heat Transfer, Vol. 98, pp. 438-445, 1976.
〔33〕 Roozeboom, F.(Eds.), Advances in Rapid Thermal and Integrated Processing, 1996.
〔34〕 Timans, P. J., “The Role of Thermal Radiative Properties of Semiconductor Wafers in Rapid Thermal Processing”, Materials Research Society Symposium Proceedings, Vol. 429, pp. 3-14, 1996.
〔35〕 Botteldooren, D., and Baets, R., “Influence of Band-gap Shrinkage on the Carrier-induced Refractive Index Change in InGaAsP,” Applied Physics Letters, Vol. 54, Issue 20, pp. 1989, 1989.
〔36〕 Bennett, B.R., Soref, R.A., and Del Alamo, J.A., “Carrier-induced Change in Refractive Index of InP, GaAs and InGaAsP,” IEEE Journal of Quantum Electronics, Vol. 26, Issue 1, pp. 113-122, 1990.
〔37〕 Oswald, F., and Schade, R., “The Determination of the Optical Constants of Semiconductors of the Type A(III)B(V) in the Infrared,” Zeitschrift fur Naturforschung, Vol. 9A, pp. 611-617, 1954.
〔38〕 Beaudoin, M., DeVries, A. J. G., Johnson, S. R., Laman, H., and Tiedje, T., “Optical Absorption Edge of Semi-insulating GaAs and InP at High Temperatures,” Applied Physics Letters, Vol. 70, Issue 26, pp. 3540-3542, 1997.
〔39〕 Mrstik, B. J., McMarr, P. J., Lawrence, R. K., and Hughes, H. L., “The Use of Spectroscopic Ellipsometry to Predict the Radiationresponse of SIMOX,” IEEE Transactions on Nuclear Science, Vol. 41, Issue 6, pp. 2277-2283, 1994.
〔40〕 Charpenay, S., Rosenthal, P. A., Solomon, P. R., Xu, J., Yakovlev, V. A., Allen, L. P. Brandt, M. W., and Cordts, B., “FT-IR Reflectance Spectroscopy Control of SIMOX Structures,” Proceedings 1998 IEEE International SOI Conference, pp. 43-44, 1998.
〔41〕 Yakovlev, V. A., Rosenthal, P. A., and Ane, M. J., “FTIR Dosimetry Mapping of as-Implanted SIMOX Wafers,” 2001 IEEE International SOI Conference, pp. 39-40 ,2001.
〔42〕 Lee, B. J., Zhang, Z. M., Early, E. A., DeWitt, D. P., and Tsai, B. K., “Modeling Radiative Properties of Silicon with Coatings and Comparison with Reflectance Measurements,” Journal of Thermophysics and Heat Transfer, Vol. 19, No. 4, pp. 558-565, 2005.
〔43〕 Maltison, I. H., “Interspecimen Comparison of the Refractive Index of Fused Silica,” Journal of the Optical Society of America, Vol. 55, No. 10, pp.1205-1209, 1965.
〔44〕 Sze, S. M., Semiconductor Devices: Physics and Technology, 2nd Ed., Wiley, 2001.
〔45〕 http://felix.physics.sunysb.edu/~allen/252/PHY251_Michelson.html
〔46〕 http://www.pyrometer.com/Tech/emissivity_technology.html
〔47〕 Kline, S. J., “The Purpose of Uncertainty Analysis,” ASME Journal of Fluids Engineering, Vol. 107, pp. 153-160, 1985.
〔48〕 Abernethy R. B., Benedict, R. P., and Dowdell, R. B., “ASME Measurement Uncertainty,” ASME Journal of Fluids Engineering, Vol. 107, pp. 161-164, 1985.
〔49〕 Moffat, R. J., “Using Uncertainty Analysis in the Planning of Experiment,” ASME Journal of Fluids Engineering, Vol. 107, pp. 173-179, 1985.
〔50〕 Lassahn, G. D., “Uncertainty Definition,” ASME Journal of Fluids Engineering, Vol. 107, pp. 179-180, 1985.