| 研究生: |
李俊廷 Chun-Ting Lee |
|---|---|
| 論文名稱: |
具有周期性空缺的鋸齒狀石墨烯奈米帶的熱電效應 Thermoelectric Effects of Zigzag Graphene Nanoribbons with Periodic Vacancies. |
| 指導教授: | 郭明庭 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 41 |
| 中文關鍵詞: | 石墨烯 、石墨烯奈米帶 、熱電效應 |
| 外文關鍵詞: | Graphene, Graphene Nanoribbons, Thermoelectric Effects |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
儘管鋸齒狀石墨烯納米帶(ZGNRs)通常呈現金屬相,但具有周期性空缺的 ZGNRs導致了亞能帶和能隙的產生。因此,探索它們的熱電性質變得至關重要。利用緊束縛模型和 Green's 函數技術,我們從理論上研究了具有周期性空缺的 ZGNRs 的熱電效應。空缺的大小和位置影響了亞能帶的寬度和能隙的大小,為優化與金屬電極的接觸性提供了途徑。在室溫下,具有周期性小空缺的 ZGNRs 的最大功率因數(PF)可達到一維系統理論限制值的84%。
Although zigzag graphene nanoribbons (ZGNRs) typically exhibit metallic phases, those with periodic vacancies introduce subbands and band gaps. Hence, exploring their thermoelectric properties becomes imperative. Utilizing the tight-binding model and Green’s function technique, we theoretically investigate the thermoelectric effects of ZGNRs featuring periodic vacancies. The widths of subbands and magnitudes of gaps are influenced by the sizes and positions of vacancies, offering avenues for optimizing contact properties with metallic electrodes. At room temperature, the maximum power factor (PF) achievable by ZGNRs with periodic vacancies can reach 84% of the theoretical limit for one-dimensional systems.
[1] K. Nakada, M. Fujita, G. Dresselhaus and M. S. Dresselhaus, Edge state in graphene ribbons: Nanometer size effect and edge shape dependence, Phys. Rev. B 54, 17954 (1996).
[2] K. Wakabayashi, M. Fujita, H. Ajiki, and M. Sigrist, Electronic and magnetic properties of nanographite ribbons, Phys. Rev. B 59, 8271 (1999).
[3] Y. G. Gurevich and G. N. Logvinov. Physics of thermoelectric cooling. Semicond. Sci. Technol. 20, R57 (2005).
[4] E. Velmre, "Thomas Johann Seebeck and his contribution to the modern science and technology", IEEE, 2010 12th Biennial Baltic, Tallinn Electronics Conference, Tallinn, Estonia, (2010).
[5] Akram I. Boukai1, Yuri Bunimovich1, Jamil Tahir-Kheli1, Jen-Kan Yu1, William A. Goddard III1 & James R. Heath1, "Silicon nanowires as efficient thermoelectric materials", Nature vol. 451(7175), (2008).
[6] Geim, A. K. & Novoselov, K. S. "The rise of graphene". Nature Mater. 6, 183–191 (2007).
[7] J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A. P. Seitsonen, M. Saleh, X. Feng, K. Mullen, and Roman Fasel, Atomically precise bottom-up fabrication of graphene nanoribbons, Nature 466, 470 (2010).
[8] Y. T. Zhang, Q. M. Li, Y. C. Li, Y. Y. Zhang and F. Zhai, Band structures and transport properties of zigzag graphene nanoribbons with antidot array, J. Phys: Conddens. Matter 22, 315304 (2010).
[9] L. Brey and H. A. Fertig. Electronic states of graphene nanoribbons studied with the Dirac equation. Phys Rev. B 73, 235411 (2006).
[10] K. Wakabayashi, K Sasaki, T. Nakanishi and T. Enoki, Electronic states of graphene nanoribbons and analytical solutions, Sci. Technol. Adv. Mater. 11, 054504 (2010).
[11] P.F. Yuan et al. Electronic properties of one-dimensional graphene quantum-dot arrays. Org. Electron.15. (2014).
[12] H. Haug and A. P. Jauho. Quantum kinetics in transport and optics of semiconductors. Springer, Heidelberg. (1996).
[13] David M. T. Kuo and Y. C. Chang, Contact effects on thermoelectric properties of textured graphene nanoribbons, Nanomaterials 12, 3357 (2022).
[14] Y. Xu, Z. Gan, and S. C. Zhang, Enhanced Thermoelectric Performance and Anomalous Seebeck Effects in Topological Insulators, Phys. Rev. Lett. 112, 226801 (2014).
[15] H. Zheng et al. Enhanced thermoelectric performance of graphene nanoribbons. Appl. Phys. Lett. 100, 093104. (2012).
[16] D. H. Santamore and M. C. Cross. Surface scattering analysis of phonon transport in the quantum limit using an elastic model. Phys. Rev. B66, 144302. (2002).
[17] Xu Y, Li Z. Y. and Duan W. H. Thermal and thermoelectric properties of graphene. Small. 10 2182. (2014).
[18] T. Gunst, T. Markussen, A. P. Jauho, and M. Brandbyge, Thermoelectric properties of finite graphene antidot lattices, Phys. Rev. B, 84, 155449 (2011).
[19] Y. T. Zhang, Q. M. Li, Y. C. Li, Y. Y. Zhang and F. Zhai, Band structures and transport properties of zigzag graphene nanoribbons with antidot array, J. Phys: Conddens. Matter 22, 315304 (2010).
[20] Y. Matsuda, W. Q. Deng, and W. A. Goddard III, Contact Resistance for ”End-Contacted” Metal-Graphene and Metal-Nanotube Interfaces from Quantum Mechanics, J. Phys. Chem. C. 114, 17845 (2010).
[21] H. Zheng, H. J. Liu, X. J. Tan, H. Y. Lv, L. Pan, J. Shi, and X. F. Tang, Enhanced thermoelectric performance of graphene nanoribbons, Appl. Phys. Lett. 100, 093104 (2012).
[12] H. Haug and A. P. Jauho. Quantum kinetics in transport and optics of semiconductors. Springer, Heidelberg. (1996).
[13] David M. T. Kuo and Y. C. Chang, Contact effects on thermoelectric properties of textured graphene nanoribbons, Nanomaterials 12, 3357 (2022).
[14] Y. Xu, Z. Gan, and S. C. Zhang, Enhanced Thermoelectric Performance and Anomalous Seebeck Effects in Topological Insulators, Phys. Rev. Lett. 112, 226801 (2014).
[15] H. Zheng et al. Enhanced thermoelectric performance of graphene nanoribbons. Appl. Phys. Lett. 100, 093104. (2012).
[16] D. H. Santamore and M. C. Cross. Surface scattering analysis of phonon transport in the quantum limit using an elastic model. Phys. Rev. B66, 144302. (2002).
[17] Xu Y, Li Z. Y. and Duan W. H. Thermal and thermoelectric properties of graphene. Small. 10 2182. (2014).
[18] T. Gunst, T. Markussen, A. P. Jauho, and M. Brandbyge, Thermoelectric properties of finite graphene antidot lattices, Phys. Rev. B, 84, 155449 (2011).
[19] Y. T. Zhang, Q. M. Li, Y. C. Li, Y. Y. Zhang and F. Zhai, Band structures and transport properties of zigzag graphene nanoribbons with antidot array, J. Phys: Conddens. Matter 22, 315304 (2010).
[20] Y. Matsuda, W. Q. Deng, and W. A. Goddard III, Contact Resistance for ”End-Contacted” Metal-Graphene and Metal-Nanotube Interfaces from Quantum Mechanics, J. Phys. Chem. C. 114, 17845 (2010).
[21] H. Zheng, H. J. Liu, X. J. Tan, H. Y. Lv, L. Pan, J. Shi, and X. F. Tang, Enhanced thermoelectric performance of graphene nanoribbons, Appl. Phys. Lett. 100, 093104 (2012).
[22] R. S. Whitney, Most Efficient Quantum Thermoelectric at Finite Power Output, Phys. Rev. Lett. 112, 130601 (2014).
[23] I-Ju Chen et al. Thermoelectric Power Factor Limit of a 1D Nanowire. Phys. Rev. Lett. 120, 177703. (2018).
[24] Q. Gao, and J. Guo, Role of chemical termination in edge contact to graphene. APL Mater. 2, 056105 (2014).