| 研究生: |
曹運 Yun Tsao |
|---|---|
| 論文名稱: |
懸臂梁形式壓電調諧質量阻尼器多自由度分析與最佳化設計之減振與能量擷取研究 |
| 指導教授: |
賴勇安
Yong-An Lai |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 151 |
| 中文關鍵詞: | 壓電懸臂梁 、調諧質量阻尼器 、有限元素模型 、壓電材料 、能量擷取 、RLC電路 、最佳化設計 |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究對壓電懸臂梁形式之壓電調諧質量阻尼器(Piezoelectric-Tuned Mass Damper, Piezo-TMD),進行運動方程式推導及系統分析,再結合氣彈模型,設計壓電TMD之參數使其做為氣彈模型之調諧質量阻尼器使用,並進行數值模擬。首先將壓電本構方程式結合尤拉梁形式之懸臂梁結構,推導壓電懸臂梁力學與電路運動方程式,再利用有限元素概念將壓電懸臂梁分割成元素塊,並帶入多項式形狀函數推導,疊加形成矩陣形式之壓電懸臂梁運動方程式,最後於外加電路串聯電阻及電感,形成完整電路迴路。為了檢驗矩陣形式之推導結果是否符合真實情況,繪製其頻率反應函數圖,並與文獻提供之分布參數形式之頻率反應函數圖比較。壓電TMD之設計目的為:在吸收結構能量的同時,從中擷取能量—亦即發電效率為其重點。本文定義壓電阻尼比參數為判斷其發電效率之指標。接著對壓電TMD進行敏感度分析,了解哪些尺寸參數影響壓電阻尼比。由分析發現,僅固定總厚度調整壓電層與基底層比例將有最佳的厚度比達到最大壓電阻尼比,其餘尺寸參數不影響最大壓電阻尼比。由此可知單純增加壓電材料使用量無法提升最大壓電阻尼比,亦代表壓電TMD之發電效率有其上限。故為求最大減振效果,壓電TMD之設計流程與傳統質量阻尼器不同,應先決定阻尼比再求質量比。設計時,壓電懸臂梁之尺寸可預設一組初步的數值來計算其可達到之最大壓電阻尼比。再結合氣彈模型,利用傳統調諧質量阻尼器最佳阻尼比設計公式推算出其質量比,並使用直接搜尋法(Direct Search)做最佳化設計,找出結構速度H2-norm值最小時之懸臂梁長度、電阻及電感之組合,如此便完成壓電TMD之設計。利用設計出來之壓電TMD進行數值分析、繪製頻率反應函數圖,和以設計風力進行動力分析,可知壓電TMD可在減振的同時具備不錯的發電效率。最後依據分析壓電材料在懸臂梁上之發電特性,當壓電層以最佳的長度比例極化時,壓電層有最佳發電效率。以及在高模態時,不同的彎曲方向將降低發電效率。
關鍵字: 壓電懸臂梁、調諧質量阻尼器、有限元素模型、壓電材料、能量擷取、RLC電路、最佳化設計、H2-norm最佳化
In this study, the equation of motion and system analysis of a Piezoelectric-Tuned Mass Damper (Piezo-TMD) in the form of a piezoelectric cantilever beam are derived. The piezoelectric TMD is firstly derived from the piezoelectric constitutive equation combined with the cantilever beam according to the Euler–Bernoulli beam theory. Then, the piezoelectric cantilever beam is divided into element blocks with the finite element concept to superimpose in the form of a matrix equations. Afterward, the resistance and inductance are connected in series within the circuit to form a complete circuit loop. To verify the correctness of the derived matrix equations, the frequency response function is plotted to confirm the consistency with reference which is derived according to distributed parameters. The Piezo-TMD is not only designed to reduce the vibration of the structure, but also to harvest the vibration energy of the main structure. Therefore, the power generation efficiency is also considered as a second priority in design process. The piezoelectric damping ratio defined in this paper can be used as an indicator to represent the power generation efficiency. In order to understand which parameters will affect the maximum piezoelectric damping ratio, the sensitivity analysis of parameters of the Piezo-TMD is conducted. Accordioning to the sensitivity analysis, only the thickness ratio of the piezoelectric layer to the base layer will affect the maximum piezoelectric damping ratio. The best thickness layer ratio can be found to achieve the maximum piezoelectric damping ratio. The analysis results also shown that simply increasing the amount of piezoelectric materials cannot increase the piezoelectric damping ratio so that the piezoelectric damping ratio has its upper limit, that is, the power generation efficiency has its upper bound. Because of the limitation of the maximum piezoelectric damping ratio, the proposed design method of the Piezo-TMD is different from the traditional TMD, the damping ratio is determined before the mass ratio. In the design, each dimension of the piezoelectric cantilever beam can be preset as a preliminary value, and the maximum piezoelectric damping ratio can be calculated accordingly. The mass ratio is therefore calculated by the optimum damping ratio design formula of the traditional tuned mass damper. To optimize the other parameters of the Piezo-TMD, the Direct Search method is used to find the optimum beam length, resistance, and inductance when the structural velocity H2-norm is minimum. The designed Piezo-TMD is analyzed numerically, the frequency response function and time history analysis of subjected to wind force shows that the Piezo-TMD performs well in both structural vibration reduction and power generation. Finally, according to the analysis of polarized range of the piezoelectric material on the cantilever beam, the best polarized length ratio can be found to achieve maximum power generation efficiency in the first mode. However, the power generation efficiency will be reduced in high modes due to the different bending directions.
Keywords: piezoelectric cantilever beam, tuned mass dampers, finite element model, piezoelectric materials, energy harvesting, RLC circuit, optimal design, H2-norm optimization
[1] 建築物耐風設計規範及解說,內政部營建署(2006),中華民國95年9月22日台內營字第0950805664號。
[2] Den Hartog J.P., Mechanical Vibrations, Fourth edition, New York: McGraw-Hill, (1956).
[3] Ioi T. and Ikeda K., “On the dynamic vibration damped absorber of the vibration system”, Bulletin of the Japanese Society of Mechanical Engineering, 21:64-71 (1978).
[4] Warburton G.B. and Ayorinde E.O., “Optimum absorber parameters for simple systems”, Earthquake Engineering and Structural Dynamics, 8:197-217 (1980).
[5] Ayorinde E.O. and Warburton G.B., “Minimizing structural vibrations with absorbers”, Earthquake Engineering and Structural Dynamics, 8:219-236 (1980).
[6] Warburton G.B., “Optimum absorber parameters for various combinations of response and excitation parameters”, Earthquake Engineering and Structural Dynamics, 10:381-401 (1982).
[7] Bakre S.V. and Jangid R.S., “Optimum parameters of tuned mass damper for damped main system”. Structural Control and Health Monitoring, 14:448-470 (2007).
[8] Lin C.C., Hu C.M., Wang J.F. and Hu R.Y., “Vibration Control Effectiveness of Passive Tuned Mass Dampers”, Journal of the Chinese Institute of Engineers, 17:367-376 (1994).
[9] Manbachi A., Cobbold R.S.C., “Development and application of piezoelectric materials for ultrasound generation and detection”, Ultrasound,19 (4): 187-196 (2011).
[10] Gautschi G., Piezoelectric sensorics: force, strain, pressure, acceleration and acoustic emission sensors, materials and amplifiers, Berlin: Springer (2002).
[11] “IEEE Standard on Piezoelectricity”, ANSI/IEEE Std 176-1987, ANSI/IEEE, 1987.
[12] Sirohi J. and Chopra I., “Fundamental Understanding of Piezoelectric Strain Sensors”, Journal of Intelligent Material Systems and Structures, 11(4): 246-257 (2000).
[13] Lu B. and Li Q. F., “System Identification and Control Design of a Piezoelectric-Actuated Cantilever Beam”, International Journal of Mechanical Engineering Education, 42(3): 233-250 (2014).
[14] Sunar M. and Al-Bedoor B.O., “Vibration measurement of a cantilever beam using root embedded piezoceramic sensor”, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 222(2): 147-161 (2008).
[15] Beck B.S., Cunefare K.A., Ruzzene M. and Collet M., “Experimental Analysis of a Cantilever Beam with a Shunted Piezoelectric Periodic Array”, Journal of Intelligent Material Systems and Structures, 22(11): 1177-1187 (2011).
[16] Xu X.P., Han Q.K., Chu F.L. and Parker R.G., “Vibration suppression of a rotating cantilever beam under magnetic excitations by applying the magnetostrictive material”, Journal of Intelligent Material Systems and Structures, 30(4): 576-592 (2019).
[17] Zhao G.Y., Alujevic N., Bruno D. and Paul S., “Dynamic analysis and ℋ2 optimisation of a piezo-based tuned vibration absorber”, Journal of Intelligent Material Systems and Structures, 26(15): 1995-2010 (2015).
[18] Berardengo M., Manzoni S., Thomas O. and Vanali M., “Guidelines for the layout and tuning of piezoelectric resonant shunt with negative capacitances in terms of dynamic compliance, mobility and accelerance”, Journal of Intelligent Material Systems and Structures, 32(17): 2092-2107 (2021).
[19] Yang Q.S., Yang Y., Wang Q. and Peng L.L.., “Study on the fluctuating wind responses of constructing bridge towers with magnetorheological elastomer variable stiffness tuned mass damper”, Journal of Intelligent Material Systems and Structures, 33(2): 290-308 (2022).
[20] Erturk A. and Inman D.J., “On Mechanical Modeling of Cantilevered Piezoelectric Vibration Energy Harvesters”, Journal of Intelligent Material Systems and Structures 19: 1311 (2008).
[21] Erturk A. and Inman D.J., “A distributed parameter Electromechanical model for cantilevered piezoelectric energy harvesters”, Journal of Vibration and Acoustics, 130(4):041002 (2008).
[22] Erturk A. and Inman D.J., “An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations”, Smart Materials and Structures, 18:025009 (2009).
[23] Hu G.B., Tang L.H., Liang J.R. and Das R., “Modelling of a cantilevered energy harvester with partial piezoelectric coverage and shunted to practical interface circuits”, Journal of Intelligent Material Systems and Structures, 30(13): 1896-1912 (2019).
[24] Zeng S., Zhang C.W., Wang K.F., Wang B.L. and Li S., “Analysis of delamination of unimorph cantilever piezoelectric energy harvesters”, Journal of Intelligent Material Systems and Structures, 29(9): 1875-1883 (2018).
[25] Leticia F.F.M., Miguel F.L.F. and Thomas C.A.K., “Theoretical and experimental modal analysis of a cantilever steel beam with a tip mass”, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 223(7): 1535-1541 (2009).
[26] Song H.J., Choi Y.T. and Norman M.W., “Comparison of monolithic and composite piezoelectric material–based energy harvesting devices”, Journal of Intelligent Material Systems and Structures, 25(14):1825-1837(2014).
[27] Kaur N., Mahesh D. and Singamsetty S., “An experimental study on piezoelectric energy harvesting from wind and ambient structural vibrations for wireless structural health monitoring”, Advances in Structural Engineering, 23(5): 1010-1023 (2020).
[28] Friswell M.I., Ali S.F., Bilgen O., Adhikari S., Lees A.W and Litak G., “Non-linear piezoelectric vibration energy harvesting from a vertical cantilever beam with tip mass”, Journal of Intelligent Material Systems and Structures, 23(13):1505-1521(2012).
[29] Reddy A.R., Umapathy M., Ezhilarasi D. and Gandhi U., “Improved energy harvesting from vibration by introducing cavity in a cantilever beam”, Journal of Vibration and Control, 22(13): 3057-3066 (2016).
[30] Fallahpasand S. and Dardel M., “Piezoelectric energy harvesting from highly flexible cantilever beam”, Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 233(1): 71-92 (2018).
[31] Tan T., Yan Z., Lei H. and Sun W.P., “Geometric nonlinear distributed parameter model for cantilever-beam piezoelectric energy harvesters and structural dimension analysis for galloping mode”, Journal of Intelligent Material Systems and Structures, 328(20): 3066-3078 (2017).
[32] Bhalla S. and Soh C.K., “Electromechanical Impedance Modeling for Adhesively Bonded Piezo-Transducers”, Journal of Intelligent Material Systems and Structures, 15(12): 955-972 (2004).
[33] Bhalla S. and Moharana S., “A refined shear lag model for adhesively bonded piezo-impedance transducers”, Journal of Intelligent Material Systems and Structures, 24(1): 33-48 (2013).
[34] Tan T. and Yan Z.M., “Electromechanical decoupled model for cantilever-beam piezoelectric energy harvesters with inductive-resistive circuits and its application in galloping mode”, Smart Materials and Structures, 26 035062 (2017).
[35] Hwan S.Y., Washington G. and Danak A., “Modeling, Optimization and Design of Efficient Initially Curved Piezoceramic Unimorphs for Energy Harvesting Applications”, Journal of Intelligent Material Systems and Structures, 16(10): 877-888 (2005).
[36] Thonapalin P., Aimmanee S., Laoratanakul P. and Das R., “Thermomechanical Effects on Electrical Energy Harvested from Laminated Piezoelectric Devices”, Crystals, 11(2): 141 (2021).
[37] Cassidy I.L., Scruggs J.T., Behrens S. and Gavin H.P., “Design and experimental characterization of an electromagnetic transducer for large-scale vibratory energy harvesting applications”, Journal of Intelligent Material Systems and Structures, 22(17): 2009-2024 (2011).
[38] Yuan J.Y., Peng H., Chen J.H., Sun H.Y. and Zang C.Y., “A Dual-Mode Hybrid Step-Up Converter with Stable Output for Vibration Energy Harvesting”, Energies, 15(13): 4643 (2022).
[39] Xue X.M., Sun Q., Ma Q.G. and Wang J.J., “A Versatile Model for Describing Energy Harvesting Characteristics of Composite-Laminated Piezoelectric Cantilever Patches”, Sensors, 22(12): 4457 (2022).
[40] Karimi M., Tikani R., Ziaei-Rad S. and Mirdamadi H.R., “Experimental and theoretical studies on piezoelectric energy harvesting from low-frequency ambient random vibrations”, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 230(14): 2363-2375 (2016).
[41] Adhikari S. and Arnab B., “Enhanced low-frequency vibration energy harvesting with inertial amplifiers”, Journal of Intelligent Material Systems and Structures, 33(6): 822-838 (2022).
[42] Aldraihem O. and Baz A., “Energy Harvester with a Dynamic Magnifier”, Journal of Intelligent Material Systems and Structures, 22(6): 521-530 (2011).
[43] Rupp C.J., Dunn M.L. and Kurt M., “Analysis of Piezoelectric Energy Harvesting Systems with Non-linear Circuits Using the Harmonic Balance Method”, Journal of Intelligent Material Systems and Structures, 21(14): 1383-1396 (2010).
[44] Lajimi S.A.M. and Friswell M.I., “Energy harvesting from a non-linear standing beam–mass system: Two- versus one-mode approximations”, Journal of Intelligent Material Systems and Structures, 28(8): 1010-1022(2017).
[45] Sulbhewar L. and Raveendranath P., “A consistently efficient and accurate higher order shear deformation theory based finite element to model extension mode piezoelectric smart beams” Journal of Intelligent Material Systems and Structures, 27(9): 1231-1249(2016).
[46] Gedeon D. and Rupitsch S.J., “Finite element based system simulation for piezoelectric vibration energy harvesting devices”, Journal of Intelligent Material Systems and Structures, 29(7):1333-1347 (2017).
[47] Bisegna P. and Caruso G., “Mindlin-Type Finite Elements for Piezoelectric Sandwich Plates”, Journal of Intelligent Material Systems and Structures, 11(1): 14-25 (2000).
[48] Hajheidari P., Stiharu I. and Bhat R., “Performance of tapered cantilever piezoelectric energy harvester based on Euler–Bernoulli and Timoshenko Beam theories”, Journal of Intelligent Material Systems and Structures, 31(4): 487-502 (2019).
[49] Cui M.Y., Liu H.Z., Jiang H.L., Zheng Y.B., Wang X. and Liu W., “Active vibration optimal control of piezoelectric cantilever beam with uncertainties”, Measurement and Control, 0(0): 1-11 (2022).
[50] Biswal A.R., Roy T. and Behera R.K., “Optimal vibration energy harvesting from non-prismatic axially functionally graded piezolaminated cantilever beam using genetic algorithm”, Journal of Intelligent Material Systems and Structures, 28(14): 1957-1976 (2017).
[51] Gsell D., Feltrin G. and Motavalli M., “Adaptive Tuned Mass Damper based on Pre-stressable Leaf-springs”, Journal of Intelligent Material Systems and Structures, 18(8): 845-851 (2007).
[52] Jiang G. and Hanagan L.M., “Semi-active TMD with piezoelectric friction dampers in floor vibration control”, Smart Structures and Materials, 6169, 616915, (2006).
[53] Lai Y.A., Kim J.Y., Yang C.S.W. and Chung L.L., “A low-cost and efficient d33-mode piezoelectric tuned mass damper with simultaneously optimized electrical and mechanical tuning”, Journal of Intelligent Material Systems and Structures, 32(6): 678-696 (2021).
[54] 趙嘉仁,「懸臂梁形式壓電調諧質量阻尼器之研發與最佳化設計」,國立中央大學,碩士論文,民國110年。
[55] Hambley A.R., Electrical Engineering: Principles and Applications. Fifth Edition, USA, Pearson Education, (2010).
[56] Reddy J.N., An Introduction to The Finite Element Method. Third Edition, New York, McGraw-Hill, (2005).
[57] Chopra A.K., Dynamics of Structures, Theory and applications to earthquake engineering. Fourth edition, U.S.A, Pearson Education, (2013).