跳到主要內容

簡易檢索 / 詳目顯示

研究生: 紀雅馨
Ya-Shin Chi
論文名稱: Track Evolution of Typhoon Chanthu (2021) near Taiwan as Investigated Using a High-Resolution Global Model
指導教授: 黃清勇
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 大氣科學學系
Department of Atmospheric Sciences
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 91
中文關鍵詞: MPAStyphoon
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 颱風璨樹(2021)往西北方移動靠近臺灣東南外海,接著出現明顯向右的轉折,使其沿著臺灣東部外海北上,至臺灣東北外海時,路徑則些微向左偏折。本研究使用全球模式 MPAS (the Model for Prediction Across Scales–Atmosphere),分析璨樹行經臺灣附近的路徑演變,模式解析度為60-15-3及60-15-1公里。實驗結果顯示,增加解析度使璨樹的路徑預報更為準確。考慮大尺度環流的影響,濾除 MJO (Madden-Julian oscillation) 分量的實驗結果則指出颱風將會持續往西北方向移動。有、無地形的實驗證實這些偏折是來自於地形的影響——因地形而產生的繞流使得颱風路徑向右偏折,隨後颱風左側的環流受地形阻擋而減弱,較強的偏東南風使得其向左偏折。探討兩實驗駛流風場不對稱量的差異量,本研究亦發現一反氣旋式環流及一氣旋式環流分別位於颱風路徑的東側及西側,該對環流隨時間逆時鐘旋轉,影響著颱風的移動方向。位渦收支分析指出,向右的偏折由水平平流項主導,然而向左的偏折則是來自垂直平流和非絕熱加熱項的貢獻。由於真實個案模擬存在的不確定性,本研究亦進行數個理想化實驗,探討不同颱風中心位置及不同駛流風的情況下,颱風的路徑變化。位渦收支的結果可與MPAS實驗中的機制相互對應,進一步強調了受到地形影響的颱風不對稱結構對於路徑向左偏折的重要性。而這些渦旋的路徑偏折情形可以利用參數R/L_E (R為渦旋大小,L_E為有效地形長度) 及L_D (渦旋和地形的經向距離) 來決定。


    The global model MPAS with multiple resolutions (60-15-1 km) is used to investigate the evolution of Typhoon Chanthu (2021) near Taiwan. Chanthu exhibited a rightward track deflection as it approached Taiwan from the southeast, and subsequently underwent a leftward deflection after moving offshore along the east coast towards northeastern Taiwan. Numerical experiments are conducted to identify the physical processes for the induced track changes of Chanthu. The rightward track deflection of the northward typhoon is primarily induced by the recirculating flow resulting from the effect of Taiwan topography, which is completely changed to a westward track in the absence of the large-scale MJO flow component. The wavenumber–one potential vorticity (PV) budget analysis indicates that horizontal PV advection dominates the earlier rightward deflection, while more affected by vertical PV advection and diabatic heating to move inland toward north Taiwan in the presence of Taiwan terrain. For such a northward typhoon, a pair of cyclonic and anticyclonic gyres in the wavenumber–one difference in the simulated flow with and without Taiwan terrain are rotating with time in the vicinity of the typhoon center, as found for different translational typhoons in other studies. The idealized WRF is also used to aid an interpretation of the track deflection under varying steering conditions. Idealized simulations confirm the track deflection mechanism in the real case with similar PV dynamics and further illustrate the sensitivity of the track deflection to the steering flow direction in this study. The magnitude of the rightward deflection is essentially determined by the ratio of R/L_E where R is the vortex size and L_E is the effective terrain length.

    摘要 i Abstract ii 致謝 iii Table of Contents iv List of Tables iv List of Figures vi Notation Illustration xi Chapter 1. Introduction 1 Chapter 2. Model and Method 5 2.1. The MPAS Model 5 2.2. Potential Vorticity (PV) Tendency Diagnostic Approach 6 Chapter 3. Typhoon Chanthu and Experiments 10 3.1. Typhoon Chanthu (2021) 10 3.2. Numerical Experiments 11 Chapter 4. MPAS Simulated Results 13 4.1. Simulations of Typhoon Chanthu 13 4.2. The Primary Circulation and Transverse Circulation of Chanthu 15 4.3. The PV Tendency Budget Analysis 20 Chapter 5. Comparison with Idealized Experiments 23 5.1. The Idealized WRF and Experiments 23 5.2. Results of Idealized Simulations 24 Chapter 6. Conclusions 31 References 35 Tables 40 Figures 41

    Bender, M. A., R. E. Tuleya, and Y. Kurihara, 1987: A numerical study of the effect of an island terrain on tropical cyclones. Mon. Wea. Rev., 115, 130-155.
    Bi, M., T. Li, M. Peng, and X. Shen, 2015: Interactions between Typhoon Megi (2010) and a low-frequency monsoon gyre. J. Atmos. Sci., 72, 2682–2702.
    Chan, J. C.-L., 1984: An observational study of the physical processes responsible for tropical cyclone motion. J. Atmos. Sci., 41, 1036-1048.
    Chan, J. C., F. M. Ko, and Y. M. Lei, 2002: Relationship between potential vorticity tendency and tropical cyclone motion. J. Atmos. Sci., 59, 1317-1336.
    Chang, C.-P., Y.-T. Yang, and H.-C. Kuo, 2013: Large increasing trend of tropical cyclone rainfall in Taiwan and the roles of terrain. J. Climate, 26, 4138-4147.
    Chang, S. W.-J., 1982: The orographic effects induced by an island mountain range on propagating tropical cyclones. Mon. Wea. Rev., 110, 1255-1270.
    Chien, F. C., and H. C. Kuo, 2011: On the extreme rainfall of Typhoon Morakot (2009). J. Geophys. Res., 116, D05104.
    Chen, S.-Y., C.-P. Shih, C.-Y. Huang, and W.-H. Teng, 2021: An impact study of GNSS RO data on the prediction of Typhoon Nepartak (2016) using a multiresolution global model with 3D-Hybrid data assimilation. Wea. Forecasting, 36, 957-977.
    Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18, 1016-1022.
    Hagos, S., R. Leung, S. A. Rauscher, and T. Ringler, 2013: Error characteristics of two grid refinement approaches in aquaplanet simulations: MPAS-A and WRF. Mon. Wea. Rev., 141, 3022-3036.
    Hsu, L.-H., H.-C. Kuo, and R. G. Fovell, 2013: On the geographic asymmetry of typhoon translation speed across the mountainous island of Taiwan. J. Atmos. Sci., 70, 1006-1022.
    Hsu, L.-H., S.-H. Su, R. G. Fovell, and H.-C. Kuo, 2018: On typhoon track deflections near the east coast of Taiwan. Mon. Wea. Rev., 146, 1495-1510.
    Huang, C.-Y., C.-A. Chen, S.-H. Chen, and D. S. Nolan, 2016a: On the upstream track deflection of tropical cyclones past a mountain range: Idealized experiments. J. Atmos. Sci., 73, 3157-3180.
    Huang, C.-Y., I.-H. Wu, and L. Feng, 2016b: A numerical investigation of the convective systems in the vicinity of southern Taiwan associated with Typhoon Fanapi (2010): Formation mechanism of double rainfall peaks. J. Geophys. Res. Atmos., 121, 12 647-12676.
    Huang, C.-Y., Y. Zhang, W. C. Skamarock, and L.-F. Hsu, 2017: Influences of large-scale flow variations on the track evolution of Typhoons Morakot (2009) and Megi (2010): Simulations with a global variable-resolution model. Mon. Wea. Rev., 145, 1691-1716.
    Huang, C.-Y., C.-H. Huang, W. C. Skamarock, 2019: Track deflection of Typhoon Nesat (2017) as realized by multiresolution simulations of a global model. Mon. Wea. Rev., 147, 1593-1613.
    Huang, C.-Y., C.-W. Chou, S.-H. Chen, and J.-H. Xie, 2020a: Topographic rainfall of tropical cyclones past a mountain range as categorized by idealized simulations. Wea. Forecasting, 35, 25-49.
    Huang, C.-Y., T.-C. Juan, H.-C. Kuo, and J.-H. Chen, 2020b: Track deflection of Typhoon Maria (2018) during a westbound passage offshore of northern Taiwan: Topographic influence. Mon. Wea. Rev., 148, 4519-4544.
    Huang, C.-Y., J.-Y. Lin, W. C. Skamarock, and S.-Y. Chen, 2022a: Typhoon forecasts with dynamic vortex initialization using an unstructured mesh global model. Mon. Wea. Rev., 150, 3011-3030.
    Huang, C.-Y., S.-H. Sha, and H.-C. Kuo, 2022b: A modeling study of Typhoon Lekima (2019) with the topographic influence of Taiwan. Mon. Wea. Rev., 150, 1993-2011.
    Huang, K.-C., and C.-C. Wu, 2018: The impact of idealized terrain on upstream tropical cyclone track. J. Atmos. Sci., 75, 3887-3910.
    Huang, Y.-H., C.-C. Wu, and Y. Wang, 2011: The influence of island topography on typhoon track deflection. Mon. Wea. Rev., 139, 1708-1727.
    Jian, G.-J., and C.-C. Wu, 2008: A numerical study of the track deflection of Supertyphoon Haitang (2005) prior to its landfall in Taiwan. Mon. Wea. Rev., 136, 598-615.
    Li, R.-C., and W. Zhou, 2013: Modulation of western North Pacific tropical cyclone activity by the ISO. Part II: Tracks and landfalls. J. Climate, 26, 2919-2930.
    Lin, Y.-L., J. Han, D. W. Hamilton, and C.-Y. Huang, 1999: Orographic influence on a drifting cyclone. J. Atmos. Sci., 56, 534-562.
    Lin, Y.-L., D. B. Ensley, S. Chiao, and C.-Y. Huang, 2002: Orographic influences on rainfall and track deflection associated with the passage of a tropical cyclone. Mon. Wea. Rev., 130, 2929-2950.
    Lin, Y.-L., S.-Y. Chen, C. M. Hill, and C.-Y. Huang, 2005: Control parameters for the influence of a mesoscale mountain range on cyclone track continuity and deflection. J. Atmos. Sci., 62, 1849-1866.
    Lin, Y.-L., and L. C. Savage, 2011: Effects of landfall location and the approach angle of a cyclone vortex encountering a mesoscale mountain range. J. Atmos. Sci., 68, 2095-2106.
    Lin, Y.-L., S.-H. Chen, and L. Liu, 2016: Orographic influence on basic flow and cyclone circulation and their impacts on track deflection of an idealized tropical cyclone. J. Atmos. Sci., 73, 3951-3974.
    Park, S.-H., J. B. Klemp, and W. C. Skamarock, 2014: A comparison of mesh refinement in the global MPAS-A and WRF models. Mon. Wea. Rev., 142, 3614-3634.
    Sakaguchi, K., L. R. Leung, C. Zhao, Q. Yang, J. Lu, and S. Hagos, 2015: Exploring a multiresolution approach using AMIP simulations. J. Climate, 28, 5549-5574.
    Shapiro, L. J., 1992: Hurricane vortex motion and evolution in a three-layer model. J. Atmos. Sci., 49, 140-153.
    Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN- 4751STR, 113 pp.
    Skamarock, W. C., J. B. Klemp, M. G. Duda, L. D. Fowler, S.-H. Park, and T. D. Ringler, 2012: A multiscale nonhydrostatic atmospheric model using centroidal Voronoi tesselations and C-grid staggering. Mon. Wea. Rev., 140, 3090-3105.
    Skamarock, W. C., and Coauthors, 2021: A Description of the Advanced Research WRF Model Version 4.3. NCAR Tech. Note NCAR/TN-556+STR.
    Tang, C. K., and J. C. L. Chan, 2014: Idealized simulations of the effect of Taiwan and Philippines topographies on tropical cyclone tracks. Quart. J. Roy. Meteor. Soc., 140, 1578-1589.
    Tang, C. K., and J. C. L. Chan, 2016a: Idealized simulations of the effect of Taiwan topography on the tracks of tropical cyclones with different sizes. Quart. J. Roy. Meteor. Soc., 142, 793-804.
    Tang, C. K., and J. C. L. Chan, 2016b: Idealized simulations of the effect of Taiwan topography on the tracks of tropical cyclones with different steering flow strengths. Quart. J. Roy. Meteor. Soc., 142, 3211-3221.
    Wang, Y., and G. J. Holland, 1996: The beta drift of baroclinic vortices. Part II: Diabatic vortices. J. Atmos. Sci., 53, 3737-3756.
    Wu, L., and B. Wang, 2000: A potential vorticity tendency diagnostic approach for tropical cyclone motion. Mon. Wea. Rev., 128, 1899-1911.
    Wu, C.-C., and Y. Kurihara, 1996: A numerical study of the feedback mechanisms of hurricane–environment interaction on hurricane movement from the potential vorticity perspective. J. Atmos. Sci., 53, 2264-2282.
    Wu, C.-C., T.-H. Li, and Y.-H. Huang, 2015: Influence of mesoscale topography on tropical cyclone tracks: Further examination of the channeling effect. J. Atmos. Sci., 72, 3032-3050.
    Yeh, T.-C., and R. L. Elsberry, 1993a: Interaction of typhoons with the Taiwan topography. Part I: Upstream track deflections. Mon. Wea. Rev., 121, 3193-3212.
    Yeh, T.-C., and R. L. Elsberry, 1993b: Interaction of typhoons with the Taiwan topography. Part II: Continuous and discontinuous tracks across the island. Mon. Wea. Rev., 121, 3213-3233.
    Yu, H., W. Huang, Y. H. Duan, J. C. L. Chan, P. Y. Chen, and R. L. Yu, 2007: A simulation study on pre-landfall erratic track of typhoon Haitang (2005). Meteor. Atmos. Phys., 97, 189-206.
    Zarzycki, C. M., and C. Jablonowski, 2015: Experimental tropical cyclone forecasts using a variable-resolution global model. Mon. Wea. Rev., 143, 4012-4037.
    Zarzycki, C. M., C. Jablonowski, and M. A. Taylor, 2014: Using variable-resolution meshes to model tropical cyclones in the Community Atmosphere Model. Mon. Wea. Rev., 142, 1221-1239.

    QR CODE
    :::