跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳天霖
Tian-Lin Chen
論文名稱: 碳支撐之鉑鈀及鉑鈀釕奈米觸媒其鹼性電解液中氧氣還原反應之電化學性質
Electrochemical Properties of PtPd/C and PtPdRu/C Nanocatalysts toward Oxygen Reduction Reaction in Alkaline Solution
指導教授: 王冠文
Kuan-Wen Wang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學與工程研究所
Graduate Institute of Materials Science & Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 76
中文關鍵詞: 鉑鈀鉑鈀釕X光吸收光譜氧氣還原反應加速穩定度測試核殼結構鹼性電解質
外文關鍵詞: PtPd, tPdRu catalysts, X-ray absorption spectroscopy (XAS), oxygen reduction reaction (ORR), ccelerated durability tests (ADT), core/shell structure, alkaline electrolytes
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 陰離子交換膜燃料電池(anion exchange membrane fuel cells, AEMFCs)的陰極端,氧氣還原反應(oxygen reduction reaction, ORR)是一個緩慢且多步驟之反應,過電位和明顯的功率損耗也降低AEMFCs的整體能源效率。因此,發展能提升ORR效率的方法便成為能源材料研究的重點之一。在本研究中,製備具有不同結構的鉑鈀和鉑鈀釕觸媒並探討精細結構和觸媒的電化學性能之間的關係。所製備觸媒之晶格結構、表面組成、化學組成、微結構、形貌和電化學特性分別使用X光繞射儀(X-ray diffraction, XRD)、光電子能譜(X-ray photoelectron spectroscopy, XPS)、感應耦合電漿原子發射光譜分析儀(inductively coupled plasma-atomic emission spectrometer, ICP-AES)、X光吸收光譜(X-ray absorption spectroscopy, XAS)、高解析度穿透式電子顯微鏡(high resolution transmission electron microscopy, HRTEM)和旋轉盤電極(rotating disk electrode, RDE)等儀器做分析。
    本研究分成兩部分。在第一部分中,利用鈀和鉑的不同沉積條件製備具有不同核/殼結構之碳負載鉑鈀觸媒。相比於單金屬鈀觸媒,加入鉑的雙金屬觸媒都顯示出較大的ORR性能和穩定性。在這些鉑鈀樣品中,最高的鉑-鉑配位數和最高程度的核/殼結構(PtPd-1)促進ORR性能,因其有適當的電子修飾效應。PtPd-1在0.85伏特的質量活性是PtPd-3之近2倍。此外,PtPd-3具有最低鉑-鉑配位數和最高的鉑覆蓋在表面,這有利於其在ORR中的穩定度,其衰減率在5000圈的加速穩定度測試 (accelerated durability test, ADT)中只有15 %。
    在第二部分中,我們製備出金屬附載量20 %之低鉑鉑鈀釕三元觸媒,將其與鈀釕雙元觸媒比較,皆具有優異的電化學性能。根據HRTEM、XAS、電化學測試的分析,所製備的樣品皆顯示出釕核、鈀間層、Pt殼的結構,且我們系統性地闡述出鉑鈀釕觸媒其精細結構與催化性質之間的關係。觸媒的鉑-鈀配位數都與他們的ORR性能有關。Pt-5具有最高的鉑-鈀配位數,這對其ORR活性有正面的影響。然而,5000圈的加速穩定度測試後,其損失了37.3%的ORR活性。另一方面,Pt-20具有最低鉑-鈀配位數和最高的鉑覆蓋在表面,這有利於觸媒在ORR中的穩定性,其衰減率在5000圈的加速穩定度測試中只有最低的29 %。本研究闡明在鹼性電解質中核殼結構會促進觸媒活性,但表面鉑則會提升觸媒之穩定度。


    At the cathode of anion exchange membrane fuel cells (AEMFCs), the oxygen reduction reaction (ORR) is a sluggish reaction and consists of multiple reaction steps. The overpotential phenomena and significant power losses also reduce the overall energy efficiency of AEMFCs. Therefore, one of the important tasks for the energy materials is to d promote ORR efficiency. In this study, the PtPd and PtPdRu catalysts with different structures have been prepared. The relationship between their fine structures and electrochemical properties is elucidated. The lattice structures, surface compositions, chemical compositions, local structural parameters, morphologies and electrochemical performances are characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), inductively coupled plasma-atomic emission spectrometer (ICP-AES), XAS, high resolution transmission electron microscopy (HRTEM), and rotating disc electrode (RDE), respectively.
    This study is divided into two parts. In the first part, carbon-supported PtPd/C catalysts with different degrees of core/shell structure can be prepared at different deposition conditions The addition of Pt into Pd catalysts have demonstrated great promotion of ORR performance and stability compared to Pd/C reference. Among these PtPd samples, PtPd-1 with the highest coordination numbers of Pt-Pt (CNPt-Pt) and the highest degree of core/shell structure displays the best ORR performance attributed to the appropriate electronic effects. The mass activity at 0.85 V of PtPd-1 is nearly 2 times higher than that of PtPd-3. Besides, PtPd-3 sample with the lowest CNPt-Pt and the highest Pt coverage on the surface has the best ORR stability and the decay rate is only 15 % after accelerated durability test (ADT) of 5000 cycles.
    In the second part, carbon-supported PtPdRu catalysts with metal loading of 20 wt % and different amounts of Pt adlayers have been prepared. These samples with low Pt loading have superior electrochemical properties to reference PdRu/C. Based on the analysis of the HRTEM, XAS, and electrochemical measurement, the as-prepared samples exhibit Ru core, Pd inter-layer, and Pt shell structure, and the correlation between fine structure and catalytic properties of PtPdRu catalysts is methodically elucidated. The CNPt-Pd of catalysts is related to their ORR performance. Pt-5 has the highest CNPt-Pd, which has positive effect on the ORR activity, and losses 37.3 % ORR activity after ADT of 5000 cycles. On the other hand, Pt-20 has the lowest CNPt-Pd and the highest Pt coverage on the surface, benefiting the ORR stability with the lowest decay rate of 28.9 % after ADT of 5000 cycles. We have demonstrated that the core/shell structure can promote the ORR activity while the surface Pt enhances the stability.

    Table of Contents 摘要 i Abstract iii 致謝 v Table of Contents vii List of Figures ix List of Tables xii Chapter 1 Introduction 1 1.1 Mechanism of ORR 2 1.2 The PtPd bimetallic catalysts and core/shell structure 4 1.3 Ruthenium modifier 8 1.4 Correlation between fine structure and ORR activity 10 1.5 Motivation and approach 12 Chapter 2 Experimental Section 13 2.1 Preparation of catalysts 13 2.1.1 Preparation of PtPd/C NPs with different structures 13 2.1.2 Preparation of PtPdRu/C NPs with different compositions 13 2.2 Characterization of catalysts 17 2.2.1 Inductively coupled plasma – atomic emission spectroscopy (ICP-AES) 17 2.2.2 X-ray photoelectron spectroscopy (XPS) 17 2.2.3 X-ray diffraction (XRD) 17 2.2.4 High resolution transmission electron microscopy (HRTEM) 17 2.2.5 X-ray absorption spectroscopy (XAS) 19 2.2.6 Linear sweep voltammetry (LSV) 21 2.2.7 Accelerated durability tests (ADT) 22 2.2.8 CO stripping tests 22 Chapter 3 Results and Discussion 23 3.1 The structural and electrochemical characterizations of carbon-supported PtPd NPs with different structures. 23 3.1.1 ICP and HRTEM characterization 23 3.1.2 XRD characterization 23 3.1.3 XAS characterization 27 3.1.4 XPS characterization 30 3.1.5 CO stripping characterization 33 3.1.6 LSV and ADT characterizations 35 3.1.7 Summary 38 3.2 The structural and electrochemical characterizations of carbon-supported PtPdRu NPs with different Pt additions. 40 3.2.1 XRD characterizations 40 3.2.2 HRTEM characterizations 40 3.2.3 XAS characterizations 43 3.2.4 XPS characterizations 48 3.2.5 CO stripping characterizations 48 3.2.6 LSV and ADT characterizations 51 3.2.7 Summary 54 Chapter 4 Conclusions 56 References 58  List of Figures Figure 1.1 Possible reaction pathways for ORR in alkaline media [13]. 3 Figure 1.2 (a) Polarization curves obtained using a rotating disk electrode for O2 reduction on Pt monolayers deposited on different metal single crystals in 0.1 mol L-1 NaOH solution. Rotation rate, 1600 rpm; sweep rate, 5 mV/s. (b) Kinetic currents (ik) at 0.80 V for O2 reduction on the Pt monolayers supported on the different single-crystal surfaces in 0.1 mol L-1 NaOH solution as functions of the calculated metal d-band center (ϵd - ϵF; relative to the Fermi level) of the respective clean platinum monolayers [19].. 5 Figure 1.3 Polarization curves (normalized to real surface area, Potential vs. Ag/AgCl) recorded for Pt core nanocrystals (NCs), Pt black, Pd black, and Pt-Pd core-shell bimetallic NCs with Pd/Pt ratios of 1/3 and 2/3 in 0.1 M KOH at 10 mV s-1. Inset is polarization curves between -0.4 and 0.1 V normalized with geometrical area of electrode [21]. 6 Figure 1.4 (a) The ORR activities in apparent current density for Pd9Ru/C, Pd9Ru@Pt/C, and Pt/C. The experiments were conducted in an oxygen-saturated 0.1 M HClO4 aqueous solution at 1600 rpm and a scan rate of 10 mV s-1. The apparent current density is based on the geometric area of the rotating disk electrode. (b) Comparison in the specific activity and mass activity for oxygen reduction reaction from Pd9Ru@Pt/C and Pt/C. The current value is determined at 0.9 V vs. reversible hydrogen electrode [11]. 9 Figure 1.5 Figure 1.5 Hydrodynamic voltammogram for MOR at 0.55 V and ORR at 0.85 V at JM 20 Pt/C, d-BASF Pd/C and PtxPd1-x/C nanoparticles with various Pt-to-Pd ratios in N2-saturated methanol–sulfuric acid (1M) [24]. 11 Figure 2.1 The experimental flowchart for the synthesis of PtPd/C NPs with different structures.. 14 Figure 2.2 The experimental flowchart for the synthesis of PtPdRu/C with different compositions. 15 Figure 2.3 The experimental process for characterization of the as-prepared catalysts.. 18 Figure 3.1 HRTEM micrographs of (a) CoPt, (b) Co90, and (c) Co50 catalysts. The particle-size distribution histograms for (e) CoPt, (f) Co90, and (f) Co50 are also displayed. 24 Figure 3.2 Line scan spectra of micrographs of (a) PtPd-1, and (b) PtPd-3 NPs. Relative at. % values (vertical axis) of Pt (red) and Pd (blue) are plotted against the line scan position (horizontal axis) and are given next to the TEM images. 25 Figure 3.3 XRD patterns of PtPd-1, PtPd-2, and PtPd-3. 26 Figure 3.5 The XANES spectra at the Pt LIII edge for PtPd-1, PtPd-2, and PtPd-3 with a close-up of characteristic peaks. 31 Figure 3.6 XPS spectra of Pt 4f (a) and Pd 3d (b) in PtPd-1, PtPd-2, and PtPd-3. 32 Figure 3.7 The CO stripping voltammograms of (a) as-prepared catalysts and the comparison of CO stripping voltammograms before and after ADT of 5000 cycles for (b) PtPd-1, (c) PtPd-2, and (d) PtPd-3 recorded in 0.5 M H2SO4 saturated with N2. 34 Figure 3.8 (a) The LSV and (b) decay rate during ADT of Pd/C and various PtPd catalysts recorded at 0.85 V in 0.1 M KOH saturated with O2. 37 Figure 3.9 XRD patterns of Pt-5, Pt-10, and Pt-20. 41 Figure 3.10 HRTEM micrographs of catalysts before and after ADT for Pt-5 (a) and (d), Pt-10 (b) and (e), and Pt-20 (c) and (f), respectively. 42 Figure 3.11 The EXAFS spectra and fitting results of Pt-5, Pt-5, and Pt-20 for Pt LIII, Pd K edge, and Ru K edge. 44 Figure 3.12 The XANES spectra at the Pt LIII edge for Pt-5, Pt-10, and Pt-20 with a close-up of characteristic peaks. 47 Figure 3.13 XPS spectra of Pt 4f (a) and Pd 3d (b) in Pt-5, Pt-10, and Pt-20. 49 Figure 3.14 The CO stripping voltammograms of (a) as-prepared catalysts and the comparison of CO stripping voltammograms before and after ADT of 5000 cycles for (b) Pt-5, (c) Pt-10, and (d) Pt-20 recorded in 0.5 M H2SO4 saturated with N2. 50 Figure 3.14 (a) The LSV and (b) decay rate during ADT of PdRu/C and various PtPdRu catalysts recorded at 0.85 V in 0.1 M KOH saturated with O2. 52   List of Tables Table 3.1 The XAS fitting results of PtPd-1, PtPd-2, and PtPd-3 for the Pt LIII and Pd K edge. 28 Table 3.2 Electrochemical results of PtPd-1, PtPd-2, PtPd-3 and Pd/C. 36 Table 3.3 The XAS fitting results of Pt-5, Pt-10, and Pt-20 for the Pt LIII, Pd K edge, and Ru K edge. 45 Table 3.4 Pt loading and electrochemical results of Pt-5, Pt-10, Pt-20 and PdRu/C. 53

    [1] J. R. Varcoe, and R. C. T. Slade, Fuel Cells 5 (2005) 2.
    [2] H. Zhang, and P. K. Shen, Chem. Soc. Rev. 41 (2012) 2382–2394.
    [3] J. R. Varcoe, P. Atanassov, D. R. Dekel, A. M. Herring, M. A. Hickner, P. A. Kohl, A. R. Kucernak, W. E. Mustain, K. Nijmeijer, K. Scott, T. Xu and L. Zhuang, Energy Environ. Sci. 7 (2014) 3135-3191.
    [4] Q. He, and E. J. Cairns, J. Electrochem. Soc. 2015, 162, 14, F1504-F1539.
    [5] S. Peng, J. Gong, X. Xu, P. C. Sui, S. Lu, and Y. Xiang, J. Phys. Chem. C 119 (2015) 24276−24281.
    [6] J. S. Spendelow, and A. Wieckowski, Phys. Chem. Chem. Phys. 9 (2007) 2654–2675.
    [7] D. P. Tang, J. Pan, S. F. Lu, L. Zhuang, and J. T. Lu, Sci. China. Chem. 53 (2010) 357-364.
    [8] M. Shao, J. Power Sources 196 (2011) 2433-2444.
    [9] Y. Lu, Y. Jiang, and W. Chen, Nano Energy 2 (2013) 836-844.
    [10] H. Lim G. Sun, N. Lim S. Sun, D. Su, and Q. Xin, J. Phys. Chem. C 111 (2007) 5605-5617.
    [11] Y. Sun, Y. C. Hsieh, L. C. Chang, P. W. Wu, and J. F. Lee , J. Power Sources 277 (2015) 116-123.
    [12] X. Ge, A. Sumboja, D. Wuu T. An, B. Li, F. W. T. Goh, T. S. A. Hor, Y. Zong, and Z. Liu, ACS Catal. 5 (2015) 4643−4667.
    [13] N. Ramaswamy, Electrocatalysis of oxygen reduction in alkaline media and a study of perfluorinated ionomer membrane degradation, in, Northeastern University (2011).
    [14] N. Ramaswamy, and S. Mukerjee, Adv. Phys. Chem. (2012) 491604−491617.
    [15] T. Poux, A. Bonnefont, A. Ryabova, G. Kerangueven, G. A. Tsirlina, and E. R. Savinova, Phys. Chem. Chem. Phys. 16 (2014) 13595.
    [16] N. M. Markovic, T. J. Schmidt, V. Stamenkovic, and P. N. Ross, Fuel Cells 1 (2001) 12.
    [17] F. H. B. Lima, J. Zhang, M. H. Shao, K. Sasaki, M. B. Vukmirovic, E. A. Ticianelli, and R. R. Adzic, J. Phys. Chem. C 111 (2007) 404-410.
    [18] X. Zhang, S. Yu, W. Zheng, and P. Liu, Phys. Chem. Chem. Phys. 16 (2014) 16615-16622.
    [19] F. H. B. Lima, J. Zhang, M. H. Shao, K. Sasaki, M. B. Vukmirovic, E. A. Ticianelli, and R. R. Adzic, J. Solid State Electrochem. 12 (2008) 399–407.
    [20] J. J. Lv, J. N. Zheng, Y. Y. Wang, A. J. Wang, L. L. Chen, and J. J. Feng, J. Power Sources. 265 (2014) 231-238
    [21] Y. Li, Z. W. Wang, C. Y. Chiu, L. Ruan, W. Yang, Y. Yang, R. E. Palmer, and Y. Huang, Nanoscale 4 (2012) 845-581.
    [22] M. Arenz, T. J. Schmidt, K. Wandelt, P. N. Ross, and N. M. Markovic, J. Phys. Chem. B 107 (2003) 9813–9819.
    [23] M. Arenz, V. Stamenkovic, P. N. Ross, and N. M. Markovic, Surf. Sci. 573 (2004) 57–66.
    [24] S. H .Chang, W. N. Su, M. H. Yeh, C. J. Pan, K. L. Yu, D. G. Liu, J. F. Lee, and B. J. Hwang, Chem. Eur. J. 16 (2010) 11064–11071.
    [25] L. Yang, M. B. Vukmirovic, D. Su, K. Sasaki, J. A. Herron, M. Mavrikakis, S. Liao, and R. R. Adzic, J. Phys. Chem. C 117 (2013) 1748−1753.
    [26] B. Jiang, H. Ataee-Esfahani, C. Li, S. M. Alshehri, T. Ahamad, J. Henzie, and Y. Yamauchi, Chem. Eur. J. 22 (2016) 1-6.
    [27] M. Tsypkin, J. L. G. de la Fuente, S. G. Rodriguez, Y. Yu, P. Ochal, F. Seland, O. Safonova, N. Muthuswamy, M. Ronning, De. Chen, and S. Sunde, J. Electroanal. Chem. 704 (2013) 57-66.
    [28] S. S. John, R. W. Atkinson, K. A. Unocic, R. R. Unocic, T. A. Zawodzinski, and A. B. Papandrew, ACS Catal. 5 (2015) 7015−7023
    [29] M. Xiao, L. Feng, J. Zhu, C. Liu, W. Xing, Nanoscale 7 (2015) 9467– 9471.
    [30] L. Jiang, A. Hsu, D. Chu, and R. Chen, J. Electroanal. Chem. 629 (2009) 87-93.
    [31] H. Nan, X. Tian, J. Luo, D. Dang, R. Chen, L. Liu, X. Li, J. Zeng , and S. Liao, J. Mater. Chem. A 4 (2016) 847-855.
    [32] K. Eid, H. Wang, V. Malgras, Z. A. Alothman, Y. Yamauchi, and L. Wang, J. Phys. Chem. C 119 (2015) 19947−19953.
    [33] A. Jackson, V. Viswanathan, A. J. Forman, A. H. Larsen, J. K. Norskov and T. F. Jaramillo, ChemElectroChem. 1 (2014) 67-71.
    [34] P. P. Wells, E. M. Crabb, C. R. King, R. Wiltshire, B. Billsborrow, D. Thompsett, and A. E. Russel, Phys. Chem. Chem. Phys. 11 (2009) 5773–5781.
    [35] S. Alayoglu, P. Zavalij, B. Eichhorn, Q. Wang, A. I. Frenkel, and P. Chupas, ACS Nano 3 (10) (2009) 3127–3137.
    [36] C. W. Liu, H. S. Chen, C. M. Lai, J. M. Lin, L. D. Tsai, K. W. Wang, ACS Appl. Mater. Interfaces 6 (2014) 1589-1594.
    [37] A. C. Garcia, and E.A. Ticianelli, Electrochim. Acta. 106 (2013) 453– 459.
    [38] S. Mukerjee, S. Srinivasan, M. P. Soriaga and J. McBreen, J. Electrochem. Soc. 142 (1995) 1409-1422.
    [39] H. S. Chen, Y. T. Liang, T. Y. Chen, Y. C. Tseng, C. W. Liu, S. R. Chung, C. T. Hsieh, C. E Lee and K. W. Wang, Chem. Commun. 50 (2014) 11165-11168.
    [40] S. S. John, R. W. Atkinson, O. Dyck, C. J. Sun, T. A. Zawodizinski Jr, and A. B. Papandrew, Chem. Commun. 51 (2015) 16633-16636.
    [41] K. Deplanche, M. L. Merroun, M. Casadesus, D. T. Tran, I. P. Mikheenko, J. A. Bennett, J. Zhu, I. P. Jones, G. A. Attard, J. Wood, S. Selenska-Pobell, and L. E. Macaskie, J. R. Soc. Interface 9 (2012) 1705-1712.
    [42] N. Toshima, and T. Yonezawa, New J. Chem. (1998) 1179-1201.
    [43] B. J. Hwang, L. S. Sarma, J. M. Chen, C. H. Chen, S. C. Shih, G. R.Wang, D. G. Liu, J. F. Lee, and M. T. Tang, J. Am. Chem. Soc. 27 (2005) 11140-11145.
    [44] K. G. Nishanth, P. Sridhar, and S. Pitchumani, Int. J. Hydrogen Energy 38 (2013) 612–619.
    [45] M. Weinert, and R. E. Watson, Phys. Rev. B. 1995, 51, 17168-17180.
    [46] X. Zhang, H. Wang, J. Key, V. Linkov, S. Ji, X. Wang, Z. Lei, and R. Wang, J. Electrochem. Soc. 159 (3) (2012) B270-B276.
    [47] Y. Lu, Y. Jiang, X. Gao, X. Wang, and W. Chen, J. Am. Chem. Soc. 136 (2014) 11687−11697
    [48] A. Sarkar, A. V. Murugan and A. Manthiram, J. Mater. Chem. 19 (2009) 159–165.
    [49] D. C. Papageorgopoulos, M. Keijzer, J. B. J. Veldhuis, and F. A. de Bruijn, J. Electrochem. Soc. 149 (11) (2002) A1400–A1404.
    [50] P. K. Babu, H. S. Kim, J. H. Chung, E. Oldfield, and A. Wieckowski, J. Phys. Chem. B 108 (2004) 20228-20232.
    [51] L. Jiang, A. Hsu, D. Chu, and R. Chen, Electrochim. Acta. 55 (2010) 4506–4511.
    [52] J. Solla-Gullon, V. Montiel, A. Aldaz, and J. Clavilier, Electrochem. commun. 4 (2002) 716-721.
    [53] S. S. Li, H. Liu, Y. Wang, W. Xu, J. Li, Y. Liu, X. W. Guo, and Y. J. Song, RSC Adv. 5 (2015) 8787-8792.
    [54] A. C. Garcia, V. A. Paganin, and E. A. Ticianelli. Electrochim. Acta. 53 (2008) 4309-4315.
    [55] P. Waszczuk, T. M. Barnard, C. Rice, R. I. Masel, and A. Wieckowski, Electrochem. commun. 4 (2002) 599-603.
    [56] T. Saida, N. Ogiwara, Y. Takasu, and W. Sugimoto, J. Phy. Chem. C 114 (2010) 13390-13396.

    QR CODE
    :::