| 研究生: |
張博奕 Po-Ying Chang |
|---|---|
| 論文名稱: |
微帶耦合線帶通濾波器與雙工器研製 Research of Microstrip Coupled-Line Bandpass Filter and Diplexer |
| 指導教授: |
林祐生
Yo-Shen Lin |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 可切換式濾波器 、雙工器 、帶通濾波器 、微帶耦合線 、濾波器 |
| 外文關鍵詞: | bandpass filter, diplexer, coupled-line filter, coupled line |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要探討使用微帶耦合線實現以四分之一波長共振器為基礎的帶通濾波器原型電路,其電路面積較傳統使用二分之一波長設計者縮小達一半以上。透過適當的耦合線佈線方式,並引入二極體切換電路控制共振器電氣特性,我們設計出具有可切換通帶功能的濾波器,其在截止時,從直流到三倍中心頻處都能有20 dB的隔離度。藉由耦合線的傳輸零點特性,我們進一步設計出能抑制高階旁生通帶的帶通濾波器,30 dB止帶衰減的頻率上限可達四倍中心頻率。再者,利用耦合線帶通濾波器的反射係數相位特性,我們實現比傳統設計電路面積小的雙工器,並藉由引入交叉耦合改善雙工器的選擇度,以滿足現代通訊系統規格要求。
在本論文中,針對各式微帶耦合線的不同特性均詳細加以研究,並討論應用於濾波器與雙工器設計的最佳實施方式,而針對各種設計,均有一整套簡潔明僚的設計流程作為設計工具,同時也為未來進一步的改良提供更多的設計彈性。
In this study, several kinds of microstrip coupled-line structures are used to implement compact bandpass filters, which are based on quarter-wavelength resonators. Compared to the conventional parallel-coupled bandpass filters that are based on half-wavelength resonators, the circuit size of proposed filters are reduced by more than half. The passband of proposed coupled-line filter can be made switchable by a proper circuit layout along with the incorporation of diodes to change the resonance characteristics of quarter-wavelength resonators. An on-off isolation of more than 20dB up to 3 has been achieved. In addition, by utilizing the inherent transmission zeros of coupled-lines, the 30dB stopband bandwidth of proposed filter can be extended up to 4 . Moreover, by manipulating the phase of input reflection coefficient, we can implement diplexers based on proposed filter structures with smaller circuit size than conventional designs. Additional cross-coupling between non-adjacent coupled-line sections can also be introduced to improve the selectivity.
In this work, the characteristics of different kinds of coupled-line sections are thoroughly investigated to make the best use of them in bandpass filter and diplexer designs. Simple and clear design flows have also been proposed for all designs, which allow the easy extension of proposed filter structures for further improvement in the future.
[1] S. B. Cohn,” Parallel-coupled transmission-line-resonator filters,” IEEE Trans. Microw. Theory Tech., vol. 6, no. 2, Apr. 1958.
[2] J. Lee, Z. M. Tsai, and H. Wang, “A bandpass filter-integrated switch using field-effect transistors and its power analysis,” in IEEE MTT-S Int. Microw. Symp. Dig., pp. 768–771. June 2006.
[3] Y. H. Shu, J. A. Navarro, and K. Chang, “Electronically switchable and tunable coplanar waveguide-slotline bandpass filters,” IEEE Trans. Microw. Theory Tech., vol. 39, no. 3, pp. 548–554, Mar. 1991.
[4] T. S. Martin, F. Wang, and K. Chang, “Theoretical and experimental investigation of novel varactor-tuned switchable microstrip ring resonator circuits,” IEEE Trans. Microw. Theory Tech., vol. 36, no. 12, pp. 1733–1739, Dec. 1988.
[5] S.-F. Chao, C.-H. Wu, Z.-M. Tsai, H. Wang, C.-H. Chen, “Electronically switchable bandpass filters using loaded stepped-impedance resonators,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 12, Part 1, pp. 4193–4201, Dec. 2006.
[6] J. G. Garca, F. Martn, F. Falcone, J. Bonache, I. Gil, T. Lopetegi, M. A. G. Laso, M. Sorolla, and R. Marqus, “Spurious passband suppression in microstrip coupled line bandpass filters by means of split ring resonators,” IEEE Microw. Wireless Compon. Lett., vol. 14, no. 9, pp. 416–418, Sep. 2004.
[7] T. Lopetegi, M. A. G. Laso, F. Falcone, F. Martin, J. Bonache, J. Garcia, L. Perez-Cuevas, M. Sorolla, and M. Guglielmi, “Microstrip wigglyline bandpass filters with multispurious rejection,” IEEE Microw. Wireless Compon. Lett., vol. 14, no. 11, pp. 531–533, Nov. 2004.
[8] S.-C. Lin, P.-H. Deng, Y.-S. Lin, C.-H. Wang, and C.-H. Chen, “Wide-stopband microstrip bandpass filters using dissimilar quarter-wavelength stepped- impedance resonators,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 3, pp. 1011–1018, Mar. 2006.
[9] C.-F. Chen, T.-Y. Huang, C.-P. Chou, R.-B. Wu, “Microstrip diplexers design with common resonator sections for compact size, but high isolation,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 5, pp.1945–1952, May 2006.
[10] George L. Matthaei, “Direct-coupled, band-pass filters with resonators,” IRE International Convention Record, vol. 6, Part 1, pp. 98-111, Mar. 1958.
[11] Y.-S. Lin, C.-H. Wu, and C.-H. Chen, “Novel compact coupled-line bandpass filters based on quarter-wavelength resonators,” in Proc. Asia-Pacific Microwave Conf. Abstracts, pp. 15, 2004.
[12] C.-H. Wu, Y.-S. Lin, C.-H. Wang, C.-H. Chen, “Compact microstrip coupled- line bandpass filter with four transmission zeros,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 9, pp. 579–581, Sep. 2005.
[13] C.-H. Wu, C.-H. Wang, Y.-S. Lin, C.-H. Chen, “Parallel-coupled coplanar -waveguide bandpass filter with multiple transmission zeros,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 2, pp. 118–120, Feb. 2007.
[14] Y.-Y. Yan, Y.-T. Chang, H. Wang, R.-B. Wu, C.-H. Chen, “ Highly selective microstrip bandpass filters in Ka-band,” European Microwave Conference, 2002. 32nd pp.1–4, Oct. 2002.
[15] David M. Pozar, Microwave Engineering, 2nd Edition, John Wiley & Sons, Inc., 1998.
[16] J. S. Hong, M. J. Landcaster, Microstrip Filters for RF/Microwave Application, John Wiley & Sons, Inc., 2001.
[17] G. L. Matthaei, L. Yong, E. M. T. Jones, Microwave Filters, Impedance -Matching Networks, and Coupling Structures.1980.