跳到主要內容

簡易檢索 / 詳目顯示

研究生: 吳秉宜
Ping-I Wu
論文名稱: Large-volume Microwave Cavity Design for the Taiwan Axion Search Experiment with Haloscope
指導教授: 余欣珊
Shin-Shan Yu
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 65
中文關鍵詞: 暗物質軸子強CP問題
外文關鍵詞: Dark matter, Axion, Strong CP problem
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在軸子(Axion)偵測實驗中,共振腔的品質因子(quality factor)、form factor和體積都很重要。大多數實驗通常使用帶有調頻桿的圓柱形腔體;然而,它們的體積受到實驗的目標共振頻率的限制。因此,我們需要研發一種具有良好性能的新型可調頻的共振腔體。在2020年,一種叫做圓錐殼共振腔體(conic-shell cavity)的新穎結構被提出。我模擬了圓錐殼共振腔體的特性,並透過測量兩個用鋁製成的樣品驗證了模擬的結果。使用這種設計,我們預期能將實驗對軸子-光子-光子耦合(axion-photon-photon coupling)的靈敏度提高2.6倍。


    In the axion haloscope experiments, the quality factor, form factor, and volume of the resonator are important. Most experiments commonly use cylindrical cavities with a tuning rod; however, their volume is limited by the target resonant frequency. Thus, the development of a new frequency-tunable cavity with a good performance is needed. A novel structure called the conic-shell cavity was proposed in 2020. I simulated the characteristic of the conic-shell cavity and validated the results by measuring the performance of two prototypes fabricated with aluminum. Using this design, we expect to improve the experiment's sensitivity to the axion-photon-photon coupling by a factor of 2.6.

    1 Introduction and an Overview of Theory 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Theoretical Motivations (Axions) . . . . . . . . . . . . . . . . . . . 1 1.2.1 Strong-CP problem . . . . . . . . . . . . . . . . . . . . . . . 1 1.2.2 The Axion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.3 Cold Dark Matter Axions . . . . . . . . . . . . . . . . . . . 3 1.2.4 Different Types of Axion Experiments . . . . . . . . . . . . 3 2 The Taiwan Axion Search Experiment with a Haloscope 5 2.1 The Axion Haloscope . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Detection Figure of Merit for Cavity Design . . . . . . . . . . . . . 6 2.3 First Results of TASEH . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.4 Dilution Refrigerator . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3 Resonator 11 3.1 MW Cavity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.1.1 Resonator properties . . . . . . . . . . . . . . . . . . . . . . 11 3.2 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.3 Measurement method . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.3.1 S-parameter measurement . . . . . . . . . . . . . . . . . . . 13 3.3.2 Electric field distribution . . . . . . . . . . . . . . . . . . . 14 4 Conic-Shell Cavity 17 4.1 Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.2 Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.3 Fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5 First Aluminum Prototype Cavity 27 5.1 Fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.2 Dimension measurement . . . . . . . . . . . . . . . . . . . . . . . . 30 5.3 Validation of Tuning Mechanism . . . . . . . . . . . . . . . . . . . 31 5.4 Electric Field Distribution Measurements . . . . . . . . . . . . . . 32 5.4.1 Probe Method . . . . . . . . . . . . . . . . . . . . . . . . . . 32 5.4.2 Bead-pull Method . . . . . . . . . . . . . . . . . . . . . . . 35 5.5 Quality factor and possible issues . . . . . . . . . . . . . . . . . . . 36 6 Measurements of the second Aluminum Prototype Cavity 39 6.1 Fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 6.2 Dimension measurement . . . . . . . . . . . . . . . . . . . . . . . . 39 6.3 Validation of Tuning Mechanism . . . . . . . . . . . . . . . . . . . 40 6.4 Electric Field Distribution Measurements . . . . . . . . . . . . . . 41 6.5 Quality factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 7 Conclusion 45 Bibliography 47

    [1] Chao-Lin Kuo. “Large-volume centimeter-wave cavities for axion
    searches”. In: Journal of Cosmology and Astroparticle Physics (2020).
    [2] Chao-Lin Kuo. “Symmetrically tuned large-volume conic shell-cavities for
    axion searches”. In: Journal of Cosmology and Astroparticle Physics (2021).
    [3] Hsin Chang et al. “First Results from the Taiwan Axion Search Experiment
    with a Haloscope at 19.6 µeV”. In: Phys. Rev. Lett. 129 (11 2022), p. 111802.
    DOI: 10.1103/PhysRevLett.129.111802. URL: https://link.
    aps.org/doi/10.1103/PhysRevLett.129.111802.
    [4] Ta-Pei Cheng and Ling-Fong Li. Gauge Theory of Elemeentary Particle
    Physics. Oxford University Press, 1984.
    [5] I.S. Altarev et al. “New measurement of the electric dipole moment of the
    neutron”. In: Physics Letters B 276.1 (1992), pp. 242–246. ISSN: 0370-2693.
    DOI: https://doi.org/10.1016/0370-2693(92)90571-K. URL:
    https : / / www . sciencedirect . com / science / article / pii /
    037026939290571K.
    [6] R.J. Crewther et al. “Chiral estimate of the electric dipole moment of the
    neutron in quantum chromodynamics”. In: Physics Letters B 88.1 (1979),
    pp. 123–127. ISSN: 0370-2693. DOI: https://doi.org/10.1016/0370-
    2693(79 ) 90128 - X. URL: https : / / www . sciencedirect . com /
    science/article/pii/037026937990128X.
    [7] Jihn E. Kim. “Weak-Interaction Singlet and Strong CP Invariance”. In:
    Phys. Rev. Lett. 43 (2 1979), pp. 103–107. DOI: 10.1103/PhysRevLett.
    43 . 103. URL: https : / / link . aps . org / doi / 10 . 1103 /
    PhysRevLett.43.103.
    [8] M.A. Shifman, A.I. Vainshtein, and V.I. Zakharov. “Can confinement ensure natural CP invariance of strong interactions?” In: Nuclear Physics
    B 166.3 (1980), pp. 493–506. ISSN: 0550-3213. DOI: https : / / doi .
    org / 10 . 1016 / 0550 - 3213(80 ) 90209 - 6. URL: https :
    / / www . sciencedirect . com / science / article / pii /
    0550321380902096.
    47
    [9] Michael Dine, Willy Fischler, and Mark Srednicki. “A simple solution to
    the strong CP problem with a harmless axion”. In: Physics Letters B 104.3
    (1981), pp. 199–202. ISSN: 0370-2693. DOI: https://doi.org/10.1016/
    0370 - 2693(81 ) 90590 - 6. URL: https : / / www . sciencedirect .
    com/science/article/pii/0370269381905906.
    [10] A P Zhitnitskii. “Possible suppression of axion-hadron interactions”. In:
    Sov. J. Nucl. Phys. (Engl. Transl.); (United States) 31 (). URL: https://www.
    osti.gov/biblio/7063072.
    [11] E. Corbelli and P. Salucci. “The extended rotation curve and the dark matter halo of M33”. In: Monthly Notices of the Royal Astronomical Society 311.2
    (Jan. 2000), 441–447. ISSN: 1365-2966. DOI: 10 . 1046 / j . 1365 - 8711 .
    2000.03075.x. URL: http://dx.doi.org/10.1046/j.1365-
    8711.2000.03075.x.
    [12] Lars Bergström. “Dark matter candidates”. In: New Journal of Physics 11.10
    (Oct. 2009), p. 105006. ISSN: 1367-2630. DOI: 10.1088/1367-2630/11/
    10/105006. URL: http://dx.doi.org/10.1088/1367-2630/11/
    10/105006.
    [13] John Preskill, Mark B. Wise, and Frank Wilczek. “Cosmology of the invisible axion”. In: Physics Letters B 120.1 (1983), pp. 127–132. ISSN: 0370-2693.
    DOI: https://doi.org/10.1016/0370-2693(83)90637-8. URL:
    https : / / www . sciencedirect . com / science / article / pii /
    0370269383906378.
    [14] L.F. Abbott and P. Sikivie. “A cosmological bound on the invisible axion”. In: Physics Letters B 120.1 (1983), pp. 133–136. ISSN: 0370-2693. DOI:
    https : / / doi . org / 10 . 1016 / 0370 - 2693(83 ) 90638 - X. URL:
    https : / / www . sciencedirect . com / science / article / pii /
    037026938390638X.
    [15] Michael Dine and Willy Fischler. “The not-so-harmless axion”. In: Physics
    Letters B 120.1 (1983), pp. 137–141. ISSN: 0370-2693. DOI: https : / /
    doi . org / 10 . 1016 / 0370 - 2693(83 ) 90639 - 1. URL: https :
    / / www . sciencedirect . com / science / article / pii /
    0370269383906391.
    [16] P. Sikivie. “Experimental Tests of the "Invisible" Axion”. In: Phys. Rev. Lett.
    51 (16 1983), pp. 1415–1417. DOI: 10.1103/PhysRevLett.51.1415.
    URL: https://link.aps.org/doi/10.1103/PhysRevLett.51.
    1415.
    [17] P. Sikivie. “Detection rates for “invisible”-axion searches”. In: Phys. Rev. D
    32 (11 1985), pp. 2988–2991. DOI: 10.1103/PhysRevD.32.2988. URL:
    https://link.aps.org/doi/10.1103/PhysRevD.32.2988.
    48
    [18] Javier Redondo and Andreas Ringwald. “Light shining through walls”.
    In: Contemporary Physics 52.3 (May 2011), 211–236. ISSN: 1366-5812. DOI:
    10.1080/00107514.2011.563516. URL: http://dx.doi.org/10.
    1080/00107514.2011.563516.
    [19] J I Read. “The local dark matter density”. In: Journal of Physics G: Nuclear
    and Particle Physics 41.6 (May 2014), p. 063101. ISSN: 1361-6471. DOI: 10.
    1088/0954-3899/41/6/063101. URL: http://dx.doi.org/10.
    1088/0954-3899/41/6/063101.
    [20] Hsin Chang et al. “Taiwan axion search experiment with haloscope: Designs and operations”. In: Review of Scientific Instruments 93.8 (Aug. 2022).
    ISSN: 1089-7623. DOI: 10.1063/5.0098783. URL: http://dx.doi.
    org/10.1063/5.0098783.
    [21] David M Pozar. Microwave engineering; 3rd ed. Hoboken, NJ: Wiley, 2005.
    URL: https://cds.cern.ch/record/882338.
    [22] John David Jackson. Classical Electrodynamics. Wiley, 1998. ISBN: 978-0-471-
    30932-1.
    [23] YI-CHIEH CHANG. “Development of a High Quality Factor Tunable Resonant Cavity Used in Axion Search Systems”. MA thesis. Ming Chi University of Technology, 2022.
    [24] R.A. Waldron. “Perturbation theory of resonant cavities”. English. In: Proceedings of the IEE - Part C: Monographs 107 (12 1960), 272–274(2). ISSN: 0369-
    8904. URL: https : / / digital - library . theiet . org / content /
    journals/10.1049/pi-c.1960.0041.
    [25] Binshen Meng, J. Booske, and R. Cooper. “Extended cavity perturbation technique to determine the complex permittivity of dielectric materials”. In: IEEE Transactions on Microwave Theory and Techniques 43.11 (1995),
    pp. 2633–2636. DOI: 10.1109/22.473190.

    QR CODE
    :::