跳到主要內容

簡易檢索 / 詳目顯示

研究生: 姜洵
CHIANG, HSUN
論文名稱: 力學與化學機轉調節內皮細胞隨機形成體外初期微血管叢之建模與模擬
指導教授: 鍾志昂
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 109
中文關鍵詞: 內皮細胞網絡結構細胞牽引力血管內皮生長因子細胞帕茲模型
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 體外培養內皮細胞形成微血管網絡結構,是組織工程領域中一項日趨重要的議題。經由先前學者的相關研究發現,已知促使內皮細胞聚集形成微血管之機制可能有二:其ㄧ為細胞與細胞外基質之間的受力平衡關係,其二則為在培養環境中血管內皮生長因子的濃度變化。本研究建立了同時包含此兩種機制之數學模型,在模型中以離散之細胞帕茲模型描述內皮細胞的個體遷移行為,而對於細胞外基質的變形以及血管內皮生長因子的濃度分布則以連續體模型進行定量分析。以此模型計算後得到之內皮細胞分布形態與實驗數據相符,證明內皮細胞形成微血管網絡結構之過程,確實為力學與化學機制共同作用下所產生的結果,並且藉由調整模型中之各項參數值進行數值模擬分析,推論得知此兩種機制於細胞、基質、以及血管內皮生長因子三者之間的交互作用關係為:內皮細胞之牽引力使基質材料產生密度變化後,將間接造成血管內皮生長因子在空間中的不均勻分布,其後內皮細胞將因趨觸性影響而於血管內皮生長因子之濃度較高處聚集,最終發展為穩定之微血管網絡結構。


    How the endothelial cells forming capillary networks is an important issue that has not been completely addressed in tissue engineering. Studies have showed that there might be two mechanisms underlying the network patterning: the mechanical force balance between cells and extracellular matrix, and the chemical attraction by VEGF in the surroundings. This study proposes a mathematical model that considers both the mechanical and chemical mechanisms. The stochastic behavior of cell migration is described using the cellular Potts model, and the biogel and chemical attractant VEGF are treated as continua in modeling the biogel displacement and VEGF distribution. Results from the simulation agree well with previous experimental data, showing that endothelial cells can form capillary-like structures only when both the mechanical and chemical mechanisms work together. The interaction between cells, biogel and VEGF could also be inferenced from the parametric analysis. That is, once the cells impair the uniform distribution of biogel, the VEGF gradients form as well since VEGF is binding with biogel molecules, thus the endothelial cells migrate and gather via haptotaxis. Finally, the cells, biogel and bound VEGF will accumulate at some local locations and form the stable in vitro plexus.

    中文摘要 i Abstract ii 目錄 iii 表目錄 v 圖目錄 vi 符號表 viii 第一章 緒論 1 1.1. 研究動機 1 1.2. 文獻回顧 2 1.2.1 微血管的形成與培養 2 1.2.2 描述微血管形成過程的數學模型 4 1.3. 研究目的 5 1.4. 研究方法 6 1.5. 論文架構 7 第二章 數學模型 10 2.1. 問題描述 10 2.2. 統御方程式 11 2.2.1 細胞方程式-細胞帕茲模型 11 2.2.2 細胞外基質方程式 15 2.2.3 血管內皮生長因子方程式 18 2.3. 初始條件 19 2.4. 邊界條件 20 2.5. 無因次化 21 2.6. 數值方法 24 2.6.1 計算流程 24 2.6.2 軟體簡介 25 2.6.3 MATLAB 之相關設置 26 2.6.4 COMSOL Multiphysics 之相關設置 27 第三章 模擬結果與實驗比對 36 3.1. 細胞網絡結構的形成過程 36 3.2. 細胞外基質厚度對網絡結構的影響 40 3.3. 血管內皮生長因子對網絡結構的影響 41 第四章 參數分析 61 4.1. 內皮細胞的遷徙特性 61 4.1.1 細胞擴散性強度對網絡結構的影響 61 4.1.2 細胞移流性強度對網絡結構的影響 62 4.1.3 細胞趨觸性強度對網絡結構的影響 63 4.2. 細胞與細胞外基質的交互作用 64 4.2.1 細胞對基質施加之牽引力強度對網絡結構的影響 64 4.2.2 細胞對基質上貼附點之競爭現象對網絡結構的影響 65 4.3. 細胞外基質與血管內皮生長因子的交互作用 66 4.3.1 血管內皮生長因子與基質分子之結合率對網絡結構的影響 66 4.3.2 血管內皮生長因子與基質分子之分離率對網絡結構的影響 67 第五章 結論與未來展望 86 參考文獻 89

    Allier, C., Kesavan, S. V., Coutard, J. G., Cioni, O., Momey, F., Navarro, F., Menneteau, M., Chalmond, B., Obeid, P., Haguet, V., David-Watine, B., Shorte, S., van der Sanden, B., di Natale, C., Hamard, L., Wion, D., Dolega, M. E., Picollet-D'hahan, N., Gidrol, X. and Dinten, J. M. 2014. Video lensfree microscopy 2D and 3D culture of cells. Proceedings SPIE, 8947, Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues XII:89471H.
    Ambrosi, D., Bussolino, F. and Preziosi, L. 2005. A review of vasculogenesis models. J. Theor. Med. 6:1–19.
    Aznavoorian, S., Stracke, M. L., Krutzsch, H., Schiffman, E. and Liotta, L. A. 1990. Signal transduction for chemotaxis and haptotaxis by matrix molecules in tumour cells. J. Cell Biol. 110:1427–1438.
    Barocas, V. H. and Tranquillo, R. T. 1997. An anisotropic biphasic theory of tissue-equivalent mechanics: the interplay among cell traction, fibrillar network deformation, fibril alignment, and cell contact guidance. Journal of Biomechanical Engineering 119:137-145.
    Benkherourou, M., Gumery, P. Y., Tranqui, L. and Tracqui, P. 2000. Quantification and macroscopic modeling of the nonlinear viscoelastic behavior of strained gels with varying fibrin concentrations. IEEE Transactions on Biomedical Engineering 47: 1465-1475.
    Carmeliet, P. and Jain, R. K. 2000. Angiogenesis in cancer and other diseases. Nature 407:249–257.
    Folkman, J. 1971. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. 285:1182-1186.
    Folkman, J. and Haudenschild, C. 1980. Angiogenesis in vitro. Nature 288:551–556.
    Gamba, A., Ambrosi, D., Coniglio, A., de-Candia, A., Di-Talia, S., Giraudo, E., Serini, G., Preziosi, L. and Bussolino, F. 2003. Percolation, morphogenesis, and burgers dynamics in blood vessels formation. Phys. Rev. Lett. 90:118101-4.
    Graner, F. and Glazier, J. A. 1992. Simulation of biological cell sorting using a two-dimensional extended Potts model. Phys. Rev. Lett. 69:2013–2016.
    Guillemin, K., Groppe, J., Ducker, K., Treisman, R., Hafen, E. and Affolter, M. 1996. The pruned gene encodes the Drosophila serum response factor and regulates cytoplasmic outgrowth during terminal branching of the tracheal system. Development 122:1353–62.
    Holmes, M. J. and Sleeman, B. D. 2000. A mathematical model of tumour angiogenesis incorporating cellular traction and viscoelastic effects. Jourmal of Theoretical Biology 202:95-112.
    Ising, E. 1925. Beitrag zur theorie des ferromagnetismus. Z. Phys. 31:253–258.
    Köhn-Luque, A., de Back, W., Starruß, J., Mattiotti, A., Deutsch, A., Perez-Pomares, J. M. and Herrero, M. A. 2011. Early embryonic vascular patterning by matrix-mediated paracrine signalling: a mathematical model study. PLoS One 6:e24175.
    Köhn-Luque, A., de Back, W., Yamaguchi, Y., Yoshimura, K., Herrero, M.A. and Miura, T. 2013. Dynamics of VEGF matrix-retention in vascular network patterning. Phys. Biol. 10:066007.
    Kubota, Y., Kleinman, H. K., Martin, G. R. and Lawley, T. J. 1988. Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures. The Journal of Cell Biology 107:1589–1598.
    Lauffenburger, D. A. and Horwitz, A. F. 1996. Cell migration: a physically integrated molecular process. Cell 84:359-369.
    Lubarsky, B. and Krasnow, M. A. 2003. Tube morphogenesis: making and shaping biological tubes. Cell 112:19–28.
    Manoussaki, D., Lubkin, S. R., Vernon, R. and Murray, J. D. 1996. A mechanical model for the formation of vascular networks in vitro. Acta Biotheoretica 44:271–282.
    Merks, R. M. H., Brodsky, S. V., Goligorksy, M. S., Newman, S. A. and Glazier, J. A. 2006. Cell elongation is key to in silico replication of in vitro vasculogenesis and subsequent remodeling. Dev. Biol. 289:44–54.
    Merks, R. M. H., Perryn, E. D., Shirinifard, A. and Glazier, J. A. 2008. Contact-inhibited chemotaxis in de novo and sprouting blood-vessel growth. PLoS Comput. Biol. 4:e1000163.
    Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. and Teller, E. 1953. Equation of state calculations by fast computing machines. J. Chem. Phys. 21:1087.
    Moon, A. G. and Tranquillo, R. T. 1993. Fibroblast-populated collagen microsphere assay of cell traction force: part 1. continuum model. AIChE Journal 39:163-175.
    Murray, J. D. and Oster, G. F. 1984. Cell traction models for generating pattern and form in morphogenesis. Journal of Mathematical Biology 19:265–279.
    Namy, P., Ohayon, J. and Tracqui, P. 2004. Critical conditions for pattern formation and in vitro tubulogenesis driven by cellular traction fields. Journal of Theoretical Biology 227:103-120.
    Potts, R. B. 1952. Some generalized order-disorder transformations. Mathematical Proceedings. 48:106–109.
    Ruhrberg, C., Gerhardt, H., Golding, M., Watson, R., Ioannidou, S., Fujisawa, H., Betsholtz, C. and Shima, D. 2002. Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis. Genes Dev. 16:2684–2698.
    Scherer, G. W., Hdach, H. and Phalippou, J. 1991. Thermal expansion of gels: a novel method for measuring permeability. Journal of Non-Crystalline Solid 130: 157-170.
    Scianna, M., Bell, C. G. and Preziosi, L. 2013. A review of mathematical models for the formation of vascular networks. J. Theor. Biol. 333:174-209.
    Serini, G., Ambrosi, D., Giraudo, E., Gamba, A., Preziosi, L. and Bussolino, F. 2003. Modeling the early stages of vascular network assembly. EMBO J. 22:1771–1779.
    Stenzel, D., Lundkvist, A., Sauvaget, D., Busse, M., Graupera, M., van der Flier, A., Wijelath, E. S., Murray, J., Sobel, M., Costell, M., Takahashi, S., Fässler, R., Yamaguchi, Y., Gutmann, D. H., Hynes, R. O. and Gerhardt, H. 2011. Integrin-dependent and -independent functions of astrocytic fibronectin in retinal angiogenesis. Development 138:4451–4463.
    Tranqui, L. and Tracqui, P. 2000. Mechanical signalling and angiogenesis: the integration of cell-extracellular matrix couplings. Comptes Rendus de L'Académie des Sciences 323:31-47.
    Tschumperlin, D. J. 2013. Fibroblasts and the ground they walk on. Physiology 28:380–390.
    Vailhé, B., Ronot, X., Tracqui, P., Usson, Y. and Tranqui, L. 1997. In vitro angiogenesis is modulated by the mechanical properties of fibrin and is related to αvβ3 integrin localisation. In Vitro Cellular & Developmental Biology 33:763-773.
    Vega-Salas, D. E., Salas, P. J. and Rodriguez-Boulan, E. 1988. Exocytosis of vacuolar apical compartment (VAC): a cell–cell contact controlled mechanism for the establishment of the apical plasma membrane domain in epithelial cells. The Journal of Cell Biology 107:1717-1728.
    Vernon, R. B., Angello, J. C., Iruela-Arispe, M. L., Lane, T. F. and Sage, E. H. 1992. Reorganization of basement membrane matrices by cellular traction promotes the formation of cellular networks in vitro. Lab Invest. 66:536–547
    Xu, K. and Cleaver, O. 2011. Tubulogenesis during blood vessel formation. Seminars in Cell & Developmental Biology 22:993– 1004.
    吳思穎,2012,體外培養內皮細胞形成毛細血管結構前期之穩定性分析及模擬,國立中央大學碩士論文。

    QR CODE
    :::