| 研究生: |
蔡依婷 Yi-Ting Tsai |
|---|---|
| 論文名稱: |
啄鑽式電化學放電加工藍寶石基板之研究 Sapphire Substrate Machining by Using Electrochemical Discharge Machining with Peck Drilling |
| 指導教授: |
崔海平
Hai-Ping Tsui |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 131 |
| 中文關鍵詞: | 電化學放電 、啄鑽加工 、微孔加工 、藍寶石基板 |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
藍寶石基板具有硬脆特性,特別是在微細加工上,若以傳統之機械加工方法將非常困難對其加工,本研究目的為發展電化學放電加工藍寶石基板微孔之技術,採用直徑50 μm之碳化鎢圓柱工具電極進行啄鑽式電化學放電加工藍寶石基板之研究,並且進行一系列加工參數之實驗,期望獲得較深之加工深度與較小之微孔入口孔徑。本研究進行啄鑽式電化學放電微孔加工時,係採用單因子實驗分析,探討各種加工參數如工作電壓、進給速率、脈衝週期、衝擊係數以及主軸轉速等對藍寶石基板加工後之品質特性影響,品質特性則包括有微孔入口孔徑、加工孔深及工具電極長度消耗情況等。
為了改善在微孔加工中後期由於電解液更新不良導致加工能力差,工具電極直接觸碰到工件表面進而斷裂,造成加工深度受限的情形發生,本研究採用啄鑽式進行電化學放電微孔加工,藉由於工具電極向下行走一定距離後,向上抬升工具電極,不僅可以增加電解液進入微孔孔內的空間,並且在抬升的過程孔中,會產生負壓促使電解液流入微孔中,達到促進電解液補充與更新的效果,提升加工孔深與材料移除率,實驗結果顯示利用啄鑽之進給方式加工,能夠有效提升加工能力與改善工具電極斷裂之情況,並且能獲得較佳的加工深度,在工作電壓48 V、進給速率1/8 µm / s、脈衝週期10 µs、衝擊係數50 %及主軸轉速50 rpm之下,具有較佳加工孔深與微孔入口孔徑,並於工具電極之進給總行程增加後,能夠成功完成厚度200 µm藍寶石之通孔加工。
Sapphire is a material that has hard and brittle properties. The traditional machining method can hardly process sapphire substrate, especially in micromachining. Therefore, this study aims to develop the technology of electrochemical discharge machining (ECDM) micro-holes on the sapphire substrate. To perform ECDM with peck drilling, a cylindrical tungsten carbide rod with a diameter of 50 µm was used as a tool electrode. A series of studies on processing characteristics were carried out to obtain deeper machining and smaller hole diameters. Additionally, peck drilling with ECDM has been done using a single-factor experiment. The effects of the voltage, feed rate, duration time, duty factor, and rotational speed on the diameters of the micro-hole, machining depth of the micro-hole, and length of tool electrode consumption were discussed.
In this study, ECDM was combined with peck drilling to eliminate the breakage of tool electrodes and hole depth limitations caused by inadequate electrolyte renewal during the later process stage. The tool electrode will lift above the workpiece surface after machining a certain distance. This phenomenon could not only increase the space of the micro-hole into which the electrolyte goes but also generate a negative pressure to promote the electrolyte into the micro-hole during the lifting process. The electrolyte renewal, depth of the micro-hole, and material removal rate can be improved using this method. The experimental results show that the processing capability could be effectively improved, the breakage of tool electrodes could be avoided, and the depths of micro-holes could be deepened by using the peck drilling method. Better diameters and a deeper depth of micro-hole could be obtained at a voltage of 48 V, feed rate of 1/8 µm / s, duration time of 10 µs, duty factor of 50%, and rotational speed of 50 rpm. After extending the working depth, the better parameters combination mentioned above allow for the through hole machining of sapphire substrate with a 200 µm thickness.
[1] 林志光, 江振瑞, 陳彥文, 何正榮, 李朱育, 崔海平, 董必正, 5G智慧自動化工廠之實現 - 以藍寶石基板加工為例, 中央大學、台灣, 2020.
[2] M. Srivastava, R. Tripathi, S. Hloch, S. Chattopadhyaya, A.R. Dixit, “Potential of Using Water Jet Peening as a Surface Treatment Process for Welded Joints, Procedia Engineering”, Vol.149, pp.472–480, 2016.
[3] N. Haghbin, F. Ahmadzadeh, M. Papini, “Masked micro-channel machining in aluminum alloy and borosilicate glass using abrasive water jet micro-machining”, Journal of Manufacturing Processes, Vol.35, pp.307–316, 2018.
[4] A.E. Gvozdev, N.N. Sergeyev, I.V. Minayev, A.G. Kolmakov, I.V. Tikhonova, A.N. Sergeyev, D.A. Provotorov, D.M. Khonelidze, D.V. Maliy, I.V. Golyshev, “Temperature distribution and structure in the heat-affected zone for steel sheets after laser cutting”, Inorganic Materials: Applied Research, Vol.8, pp.148–152, 2017.
[5] H.H. Kellogg, “Anode Effect in Aqueous Electrolysis”, Journal of The Electrochemical Society, Vol.97, pp.133, 1950.
[6] H. Kurafuji, “Electrical discharge drilling of glass-I”, CIRP, Vol.16, pp.415,1968.
[7] V. Raghuram, T. Pramila, Y.G. Srinivasa, K. Narayanasamy, “Effect of the circuit parameters on the electrolytes in the electrochemical discharge phenomenon”, Journal of Materials Processing Technology, Vol.52, pp.301–318, 1995.
[8] I. Basak, A. Ghosh, “Mechanism of spark generation during electrochemical discharge machining: a theoretical model and experimental verification”, Journal of Materials Processing Technology, Vol.62, pp.46–53, 1996.
[9] I. Basak, A. Ghosh, “Mechanism of material removal in electrochemical discharge machining: a theoretical model and experimental verification”, Journal of materials processing technology, Vol.71, pp.350-359, 1997.
[10] N. Gautam, V.K. Jain, “Experimental investigations into ECSD process using various tool kinematics”, International Journal of Machine Tools and Manufacture, Vol.38, pp.15–27, 1998.
[11] V.K. Jain, P.M. Dixit, P.M. Pandey, “On the analysis of the electrochemical spark machining process”, International Journal of Machine Tools and Manufacture, Vol.39, pp.165–186, 1999.
[12] C.T. Yang, S.S. Ho, B.H. Yan, “Micro Hole Machining of Borosilicate Glass through Electrochemical Discharge Machining (ECDM)”, KEM, Vol.196, pp.149–166, 2001.
[13] H.J. Lim, Y.M. Lim, S.H. Kim, Y.K. Kwak, “Self-aligned microtool and electrochemical discharge machining (ECDM) for ceramic materials”, Optical Engineering for Sensing and Nanotechnology (ICOSN '01), Vol.348, Yokohama、Japan, 2001.
[14] T.K.K.R. Mediliyegedara, A.K.M. De Silva, D.K. Harrison, J.A. McGeough, “An intelligent pulse classification system for electro-chemical discharge machining (ECDM)—a preliminary study”, Journal of Materials Processing Technology, Vol.149, pp.499–503, 2004.
[15] W.Y. Peng, Y.S. Liao, “Study of electrochemical discharge machining technology for slicing non-conductive brittle materials”, Journal of Materials Processing Technology, Vol.149, pp.363–369, 2004.
[16] R. Wüthrich, L.A. Hof, A. Lal, K. Fujisaki, H. Bleuler, P. Mandin, G. Picard, “Physical principles and miniaturization of spark assisted chemical engraving (SACE)”, Journal of Micromechanics and Microengineering, Vol.15, pp.S268–S275, 2005.
[17] R. Wüthrich, U. Spaelter, H. Bleuler, “The current signal in spark-assisted chemical engraving (SACE): what does it tell us?”, Journal of Micromechanics and Microengineering, Vol.16, pp.779–785, 2006.
[18] D.J. Kim, Y. Ahn, S.H. Lee, Y.K. Kim, “Voltage pulse frequency and duty ratio effects in an electrochemical discharge microdrilling process of Pyrex glass”, International Journal of Machine Tools and Manufacture, Vol.46, pp.1064–1067, 2006.
[19] R. Wüthrich, L.A. Hof, “The gas film in spark assisted chemical engraving (SACE)—A key element for micro-machining applications”, International Journal of Machine Tools and Manufacture, Vol.46, pp.828–835, 2006.
[20] J. West, A. Jadhav, “ECDM methods for fluidic interfacing through thin glass substrates and the formation of spherical microcavities”, Journal of Micromechanics and Microengineering, Vol.17, pp.403–409, 2007.
[21] Z.P. Zheng, H.C. Su, F.Y. Huang, B.H. Yan, “The tool geometrical shape and pulse-off time of pulse voltage effects in a Pyrex glass electrochemical discharge microdrilling process”, Journal of Micromechanics and Microengineering, Vol.17, pp.265–272, 2007.
[22] Z.P. Zheng, J.K. Lin, F.Y. Huang, B.H. Yan, “Improving the machining efficiency in electrochemical discharge machining (ECDM) microhole drilling by offset pulse voltage”, Journal of Micromechanics and Microengineering, Vol.18, pp.025014, 2008.
[23] M. Jalali, P. Maillard, R. Wüthrich, “Toward a better understanding of glass gravity-feed micro-hole drilling with electrochemical discharges”, Journal of Micromechanics and Microengineering, Vol.19, pp.045001,2009.
[24] M.S. Han, B.K. Min, S.J. Lee, “Geometric improvement of electrochemical discharge micro-drilling using an ultrasonic-vibrated electrolyte”, Journal of Micromechanics and Microengineering, Vol.19, pp.065004, 2009.
[25] X.D. Cao, B.H. Kim, C.N. Chu, “Micro-structuring of glass with features less than 100μm by electrochemical discharge machining”, Precision Engineering, Vol.33, pp.459–465, 2009.
[26] C.K. Yang, C.P. Cheng, C.C. Mai, A. Cheng Wang, J.C. Hung, B.H. Yan, “Effect of surface roughness of tool electrode materials in ECDM performance”, International Journal of Machine Tools and Manufacture, Vol.50, pp.1088–1096, 2010.
[27] C.P. Cheng, K.L. Wu, C.C. Mai, C.K. Yang, Y.S. Hsu, B.H. Yan, “Study of gas film quality in electrochemical discharge machining”, International Journal of Machine Tools and Manufacture, Vol.50, pp.689–697, 2010.
[28] C.K. Yang, K.L. Wu, J.C. Hung, S.M. Lee, J.C. Lin, B.H. Yan, “Enhancement of ECDM efficiency and accuracy by spherical tool electrode”, International Journal of Machine Tools and Manufacture, Vol.51, pp.528–535, 2011.
[29] C. Wei, K. Xu, J. Ni, A.J. Brzezinski, D. Hu, “A finite element based model for electrochemical discharge machining in discharge regime”, The International Journal of Advanced Manufacturing Technology, Vol.54, pp.987–995, 2011.
[30] J.D. Abou Ziki, T. Fatanat Didar, R. Wüthrich, “Micro-texturing channel surfaces on glass with spark assisted chemical engraving”, International Journal of Machine Tools and Manufacture, Vol.57, pp.66–72, 2012.
[31] M.R. Razfar, A. Behroozfar, J. Ni, “Study of the effects of tool longitudinal oscillation on the machining speed of electrochemical discharge drilling of glass”, Precision Engineering, Vol.38, pp.885–892, 2014.
[32] B. Jiang, S. Lan, J. Ni, “Experimental Investigation of Drilling Incorporated Electrochemical Discharge Machining”, in: Volume 2: Processing, American Society of Mechanical Engineers, Detroit Michigan、USA, 2014.
[33] B. Jiang, S. Lan, J. Ni, Z. Zhang, “Experimental investigation of spark generation in electrochemical discharge machining of non-conducting materials”, Journal of Materials Processing Technology, Vol.214, pp.892–898, 2014.
[34] B. Jiang, S. Lan, K. Wilt, J. Ni, “Modeling and experimental investigation of gas film in micro-electrochemical discharge machining process”, International Journal of Machine Tools and Manufacture, 90, pp.8–15, 2015.
[35] A.B. Kamaraj, S.K. Jui, Z. Cai, M.M. Sundaram, “A mathematical model to predict overcut during electrochemical discharge machining”, The International Journal of Advanced Manufacturing Technology, Vol.81, pp.685–691, 2015.
[36] Z. Zhang, L. Huang, Y. Jiang, G. Liu, X. Nie, H. Lu, H. Zhuang, “A study to explore the properties of electrochemical discharge effect based on pulse power supply”, The International Journal of Advanced Manufacturing Technology, Vol.85, pp.2107–2114, 2016.
[37] S.F. Chung, “A study on sapphire machining by electrochemical discharge machining”, Master’s Thesis.
[38] M. Goud, A.K. Sharma, C. Jawalkar, “A review on material removal mechanism in electrochemical discharge machining (ECDM) and possibilities to enhance the material removal rate”, Precision Engineering, Vol.45, pp.1–17, 2016.
[39] M. Singh, S. Singh, “Electrochemical discharge machining: A review on preceding and perspective research, Proceedings of the Institution of Mechanical Engineers”, Part B: Journal of Engineering Manufacture, Vol.233, pp.1425–1449, 2019.
[40] M. Hajian, M.R. Razfar, S. Movahed, “An experimental study on the effect of magnetic field orientations and electrolyte concentrations on ECDM milling performance of glass”, Precision Engineering, Vol.45, pp.322–331, 2016.
[41] N. Sabahi, M.R. Razfar, M. Hajian, “Experimental investigation of surfactant-mixed electrolyte into electrochemical discharge machining (ECDM) process”, Journal of Materials Processing Technology, Vol.250, pp.190–202, 2017.
[42] Y. Liu, Z. Wei, M. Wang, J. Zhang, “Experimental investigation of micro wire electrochemical discharge machining by using a rotating helical tool”, Journal of Manufacturing Processes, Vol.29, pp.265–271, 2017.
[43] S. Elhami, M.R. Razfar, “Study of the current signal and material removal during ultrasonic-assisted electrochemical discharge machining”, The International Journal of Advanced Manufacturing Technology, Vol.92, pp.1591–1599, 2017.
[44] R.K. Arya, A. Dvivedi, “Investigations on quantification and replenishment of vaporized electrolyte during deep micro-holes drilling using pressurized flow-ECDM process”, Journal of Materials Processing Technology, Vol.266, pp.217–229, 2019.
[45] W. Tang, X. Kang, W. Zhao, “Experimental Investigation of Gas Evolution in Electrochemical Discharge Machining Process”, International Journal of Electrochemical Science, pp.970–984, 2019.
[46] V.G. Ladeesh, R. Manu, “Machining of fluidic channels on borosilicate glass using grinding-aided electrochemical discharge engraving (G-ECDE) and process optimization”, Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol.40, pp.299, 2018.
[47] M. Sundaram, Y. J. Chen, K. Rajurkar, “Pulse electrochemical discharge machining of glass-fiber epoxy reinforced composite, CIRP Annals, Vol.68, pp.169–172, 2019.
[48] X. Shi, S. Huang, L. Wang, “Investigation of the Material Removal Mechanism in Electrochemical Discharge Drilling Using a High-Speed Rotating Helical Tool-Electrode”, International Journal of Electrochemical Science, pp.9239–9254, 2019.
[49] J. Bian, B. Ma, X. Liu, L. Qi, “Experimental Study of Tool Wear in Electrochemical Discharge Machining”, Applied Sciences, Vol.10, pp.5039, 2020.
[50] J. Arab, P. Dixit, “Influence of tool electrode feed rate in the electrochemical discharge drilling of a glass substrate”, Materials and Manufacturing Processes, Vol.35, pp.1749–1760, 2020.
[51] C.C. Ho, J.C. Chen, “Micro-Drilling of Sapphire Using Electro Chemical Discharge Machining”, Micromachines, Vol.11, pp.377, 2020.
[52] T. Singh, A. Dvivedi, “On prolongation of discharge regime during ECDM by titrated flow of electrolyte”, The International Journal of Advanced Manufacturing Technology, Vol.107, pp.1819–1834, 2020.
[53] L. Zhang, Z. Yuan, S. Jiang, H. Shen, F. Cao, Z. Ning, Y. Huang, D. Xing, H. Zuo, J. Han, J. Sun, “Cavity etching evolution on the A-plane of sapphire crystal in molten KOH etchant”, Journal of Crystal Growth, Vol.552, pp.125926, 2020.
[54] B. Appalanaidu, A. Dvivedi, “On controlling of gas film shape in electrochemical discharge machining process for fabrication of elliptical holes”, Materials and Manufacturing Processes, Vol.36, pp.558–571, 2021.
[55] V. Rajput, M. Goud, N.M. Suri, “Finite Element Modeling for Comparing the Machining Performance of Different Electrolytes in ECDM”, Arabian Journal for Science and Engineering, Vol.46, pp.2097–2119, 2021.
[56] V. Rajput, S.S. Pundir, M. Goud, N.M. Suri, “Multi-Response Optimization of ECDM Parameters for Silica (Quartz) Using Grey Relational Analysis”, Silicon, Vol.13, pp.1619–1640, 2021.
[57] C. H. Yang, H. P. Tsui, “Study on ultrasonic-assisted WECDM of quartz wafer with continuous electrolyte flow”, The International Journal of Advanced Manufacturing Technology, Vol.118, pp.1061–1076, 2022.
[58] 鄭志平, 微電化學放電加工法應用於硼矽玻璃的精微加工技術之研究, 博士論文, 2008.
[59] 楊程光, 電化學放電加工法應用於石英的精微加工研究, 博士論文, 2011.
[60] 劉柏億, 脈衝複合偏壓電化學放電加工石英晶圓之研究, 碩士論文, 2021.