| 研究生: |
陳立龍 Li-long Chen |
|---|---|
| 論文名稱: |
高壓預混紊流球狀擴張火焰之自我相似性和其火焰速率於不同Lewis數(Le < 1, Le ≈ 1, Le >1) Self-similarity and flame speeds of premixed turbulent spherical expanding flames under elevated pressures at different Lewis numbers (Le < 1, Le ≈ 1, Le > 1) |
| 指導教授: |
施聖洋
Shengyang Shy |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 能源工程研究所 Graduate Institute of Energy Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 熱擴散不穩定 、預混紊流球狀火焰 、自我相似傳播 、紊焰傳播速率 、火 焰紊流雷諾數 |
| 外文關鍵詞: | thermodiffusive instability, premixed turbulent spherical flame, self-similar propagation, turbulent flame speed, flame turbulent Reynolds number |
| 相關次數: | 點閱:22 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文定量量測在高壓條件下(p = 1 ~ 5 atm)之預混紊焰的燃燒速率,主要目的,乃為探討熱擴散不穩定性(thermodiffusive instability),是否會影響由中心引燃向外傳播之預混紊流球狀火焰的自我相似性傳播(self-similar propagation)。此一向外傳播預混紊流球狀火焰之自我相似性,首先由Chaudhri et al. (2012)所提出,他們使用Lewis數Le ≈ 1之甲烷-空氣預混燃氣(當量比 = 0.9),在不同方均根紊流擾動速度u'和壓力p條件下之所有紊焰燃燒速率(d<R>/dt),均可用一正規化關係式來表示,即 (d<R>/dt)/S_L^b ≈ 0.102ReT,flame0.54,其中<R>為平均紊焰半徑,t為時間,S_L^b為未經過密度校正之層流燃燒速率,紊焰雷諾數ReT,flame = u'<R>/DT,而DT為熱擴散係數。本實驗使用已建立之高壓雙腔體十字型風扇擾動預混紊流爆炸設施,其可產生近似等向性紊流,並使燃燒實驗可在固定p和u'條件下進行,我們分析三種與空氣預混之不同燃氣,其具有不同Lewis數,分別為Le ≈ 0.76 < 1之合成氣(35%H2/65%CO; = 0.5)、Le ≈ 1之甲烷( = 0.9;與Chaudhri et al.相同)和Le ≈ 1.62 > 1之丙烷( = 0.7),每一種燃氣均涵蓋相當廣泛範圍之u' ~ 6 m/s和p = 1 ~ 5 atm。結果顯示,Le數對紊焰燃燒速率有重要之影響,三種不同燃氣與ReT,flame之正規化關係式分別為:Le < 1合成氣為(d<R>/dt)/S_L^b ≈ 0.190ReT,flame0.55;Le ≈ 1甲烷為(d<R>/dt)/S_L^b ≈ 0.116ReT,flame0.54和Le > 1丙烷為(d<R>/dt)/S_L^b ≈ 0.102ReT,flame0.51。分別與甲烷燃氣比較,合成氣正規化紊流燃燒速率(d<R>/dt)/S_L^b值約為甲烷之1.64倍;而丙烷僅約為甲烷之0.88倍。這是由於Le < 1紊焰,除了受到天生存在的流力不穩定性之影響,還會額外受到熱擴散不穩定性之影響。而Le ≈ 1和Le > 1紊焰,僅受流力不穩定性之影響,其(d<R>/dt)/S_L^b值在同ReT,flame值條件下,比Le < 1紊焰低很多。在此,我們提出一以Le數為修正之函數,即f(Le) = 2.15|Le - 1|,當Le ≠ 1;而當Le = 1時,f(Le) = 1,則原本相當分散之三條正規化關係式曲線,可合併成一正規化關係式:f(Le)(d<R>/dt)/S_L^b ≈ 0.113ReT,flame0.54。此研究結果,對高壓預混紊流燃燒及其與車用和空用引擎之應用,應有所助益。
This thesis measures quantitatively the turbulent flame speed of premixed flames over an initial pressure range of p = 1 ~ 5 atm. The main objective is to investigate the effect of the thermodiffusive instability on the self-similar propagation of expanding spherical premixed flames. Such a self-similar propagation phenomenon was first found by Chaudhri et al. (2012). In it they measured the turbulent flame speed (d<R>/dt) of unity Lewis number (Le) methane-air mixtures at the equivalence ratio = 0.9, such that all d<R>/dt data measured at various values of the root-mean-square turbulent fluctuation velocity (u') and pressures (p) can be represented by a normalized relationship: (d<R>/dt)/S_L^b ≈ 0.102ReT,flame0.54. <R> is the average flame radius, t is time, S_L^b is the laminar burning velocity before density correlation, and flame turbulent Reynolds number ReT,flame= u'<R>/DT where DT is the thermal diffusivity of unburned mixtures. All present experiments are carried out in a recently-built high-pressure, double-chamber, cruciform fan-stirred premixed turbulent explosion facility, capable of generating intense near-isotropic turbulence and making combustion experiments conducted at fixed p and u' conditions possible. Three different gas fuels/air mixtures with different values of Le are measured, respectively (i) syngas (35%H2/65%CO) at = 0.5 having Le ≈ 0.76 < 1, (ii) methane CH4 at = 0.9 with Le ≈ 1 (same as Chaudhri et al. for comparison), and (iii) propane C3H8 at = 0.7 having Le ≈ 1.62 > 1. Each case covers a wide range of u' = 1.4 ~ 6 m/s and p = 1 ~ 5 atm. Results show that the effect of Le has an important impact on the turbulent flame speed. The corresponding normalized relationships for the aforesaid three different mixtures were: (d<R>/dt)/S_L^b ≈ 0.190ReT,flame0.55 for Le < 1 syngas flames, d<R>/dt)/S_L^b ≈ 0.116ReT,flame0.54 for Le ≈ 1 methane flames, and (d<R>/dt)/S_L^b ≈ 0.102ReT,flame0.51 for Le > 1 propane flames. In comparison with methane flames, values of d<R>/dt)/S_L^b of syngas and propane flames are 1.64 times higher and 0.88 times lower, respectively. This is because Le < 1 turbulent flames are not only influence by the inherent hydrodynamics instability, but also strongly affected by the thermaldiffusive instability, while Le ≈ 1 and Le > 1 turbulent flames are only influenced by the hydrodynamics instability, resulting in lower values of (d<R>/dt)/S_L^b than that of Le < 1 turbulent flames at the same ReT,flame. Here we propose a correction function f(Le) = 2.15|Le - 1| based on the Lewis number for non-unity Lewis number turbulent flames and f(Le) = 1 if Le ≈ 1, such that the above-mentioned three different normalized relationship curves can be collapsed onto one single normalized relationship curve, f(Le)[(d<R>/dt)/S_L^b] ≈ 0.113ReT,flame0.54. These results should be useful to our understanding of high-pressure premixed turbulent combustion and applicable to automobile and aviation internal combustion engines.
[1] 經濟部能源局,“中華民國102年能源統計手冊”,2013。
[2] Rezaiyan, J. and Cheremisinoff N. P., Gasification Technologies: A Primer for Engineers and Scientists. Boca Raton, FL: Taylor & Francis, 2005.
[3] Ichikawa, Y., Otawara, Y., Kobayashi, H., Ogami, Y., Kudo, T., Okuyama, M. and Kadowaki, S., “Flame structure and radiation characteristics of CO/H2/CO2/air turbulent premixed flames at high pressure”, Proc. Combust. Inst., Vol. 33, pp. 1543-1550, 2011.
[4] Liu, C. C., Shy, S. S., Chiu, C. W., Peng, M. W. and Chung, H. J., “Hydrogen/carbon monoxide syngas burning rates measurements in high-pressure quiescent and turbulent environment”, Int. J. Hydrog. Energy., Vol. 36, pp. 8595-8603, 2011.
[5] 董益銍,“淨媒汽化合成氣貧油可燃極限與速度量測:壓力和紊流效應”,國立中央大學機械工程研究所,碩士論文,2012年。
[6] Chaudhuri, S., Wu, F., Zhu, D. and Law, C. K., “Flame Speed and Self-Similar Propagation of Expanding Turbulent Premixed Flames” Phys. Rev. Lett. Vol. 108, 044503, 2012.
[7] 黃信閔,“預混紊流球狀火焰速率與自我相似傳播之量測分析”,國立中央大學機械工程研究所,碩士論文,2013年。
[8] Huang, C. C., Shy, S. S., Liu, C. C., Yan, Y. Y., “A Transition on Minimum Ignition Energy for Lean Turbulent Methane Combustion in Flamelet and Distributed Regimes,” Proc. Combust. Inst. Vol. 31, pp. 1401-1409, 2007.
[9] Damköhler, G., “The Effect of Turbulent on the Flame Velocity in Gas Mixtures”, Z. Elektrchem. Vol. 46, pp. 601-652, 1940. (English translation NASA Tech. Mem. 1112, 1947.
[10] Williams, F. A., Combustion Theory, 2nd Ed., Addison-Wesley, Redwood City, 1985.
[11] Borghi, R., “On the Structure and Morphology of Turbulent Premixed Flames”, Recent Advances in the Aerospace Sciences, Ed. C. Casci, pp. 117-138, New York, Plenum, 1985.
[12] Bray, K. N. C., “Turbulent Flows with Premixed Reactants,” Turbulent Reacting Flows, Eds. Libby, P. A. & Williams, F. A., pp. 115-183, New York, Springer-Verlag, 1980.
[13] Peters, N., “Laminar Flamelet Concepts in Turbulent Combustion”, Proc. Combust. Inst. Vol. 21, pp. 1231-1250, 1986.
[14] Peters, N., “The turbulent burning velocity for large-scale and small-scale turbulence”, J. Fluid Mech. Vol. 384, pp. 107-132, 1999.
[15] Shy, S. S., Lin, W. J. and Wei, J. C., “An Experimental Correlation of Turbulent Burning Velocities for Premixed Turbulent Methane-Air Combustion,” Proc. R. Soc. Lond. A Vol. 456, pp. 1997-2019, 2000.
[16] Kitagawa, T., Ogawa, T. and Nagano, Y., “The Effects of Pressure on Unstretched Laminar Burning Velocity, Markstein Length and Cellularity of Spherically Propagating Laminar Flames,” COMODIA, August 2-5, Japan, 2004.
[17] Bradley, D., Haq, M. Z., Hicks, R. A., Kitagawa, T., Lawes, M., Sheppard, C. G. W. and Woolley, R., “Turbulent Burning Velocity, Burned Gas Distribution, and Associated Flame Surface Definition,” Combust. Flame Vol. 133, pp. 415-430, 2003.
[18] Bradley, D., Gaskell, P. H. and Gu, X. J., “Burning Velocities, Markstein Lengths, and Flame Quenching for Spherical Methane-Air Flame: A Computational Study”, Combust. Flame Vol. 104, pp. 176-198, 1996.
[19] Liu, C. C., Shy, S. S., Chen, H. C. and Peng, M. W., “On Interaction of Centrally-Ignited, Outwardly-Propagating Premixed Flames with Fully-Developed Isotropic Turbulence at Elevated Pressure” Proc. Combust. Inst. Vol. 33, pp. 1293-1299, 2011.
[20] Markstein, G. H., Nonsteady Flame Propagation, Pergamon, 1964.
[21] 陳幸中,“高壓預混甲烷燃燒:層焰與紊焰傳播速度量測”,國立中央大學機械工程研究所,碩士論文,2009年。
[22] 彭明偉,“中央引燃往外傳播預混火焰在高壓條件下之層流和紊流燃燒速度量測”,國立中央大學機械工程研究所,碩士論文,2010年。
[23] 黃朝祺,“貧油甲烷預混紊流燃燒最小引燃能量定量量測”,國立中央大學機械工程研究所,碩士論文,2006年。
[24] 許耀文,“高壓預混紊流燃燒最小引燃能量量測”,國立中央大學機械工程研究所,碩士論文,2012年。
[25] Kelly, A. P. and Law, C. K., “Nonlinear effects in the extraction of laminar flame speed from expanding spherical flames,” Combust. Flame Vol. 156, pp. 1844-1851, 2009.
[26] Liu, C. C., Shy, S. S., Peng, M. W., Chiu, C. W. and Dong, Y. C., “High-pressure burning velocities measurements for centrally-ignited premixed methane/air flames interacting with intense near-isotropic turbulence at constant Reynolds numbers,” Combust. Flame Vol. 159, pp. 2608-2619, 2012.
[27] Darrieus, G., “Propagation D’Un Front de Flamme: Assai de Théorie des Vitesses Anomales de Déflagration par Developpement Spontané de la turbulence”, Presented at 6th Int. Cong. Appl. Mech., Paris, 1938.
[28] Landau, L. D. and Lifshitz, E. M., Fluid Mechanics, Pergamon, Oxford, 1987.
[29] Law, C. K. and Sung, C. J., “Structure, Aerodynamics, and Geometry of Premixed Flamelet”, Prog. Energy Combust. Sci., Vol. 26, pp. 459-505, 2000.
[30] Daniele, S., Jansohn, P., Mantzaras, J. and Boulouchos, K., “Turbulent flame speed for syngas at gas turbine relevant conditions”, Proc. Combust. Inst., Vol. 33, pp. 2937-2944, 2011.
[31] Lipatnikov, A. N., and Chomiak, J., “Turbulent flame speed and thickness: Phenomenology, evaluation, and application in multi-dimensional simulations” Prog Energy Combust Sci, Vol. 28, pp. 1-74, 2002.
[32] Bradley, D., Lawes, M., and Mansour, M. S., “Correlation of turbulent burning velcities of ethanol-air, measured in a fan-stirred bomb up to 1.2MPa” Combust. Flame Vol. 158, pp. 123-158, 2011.
[33] Peters, N., “Turbulent Combustion” Cambridge University Press, 2000.
[34] Chiu, C. W., Dong, Y. C., Shy , S. S., “High-pressure hydrogen/carbon monoxide syngas turbulent burning velocities measured at constant turbulent Reynolds numbers” international journal of hydrogen energy Vol. 37, pp. 10935-1580946, 2012.
[35] Shy, S. S., Lin, W. J., Peng, K. Z., “High-Intensity Turbulent Premixed Combustion: General Correlations of Turbulent Burning Velocities in a New Cruciform Burner,” Proc. Combust. Inst. Vol. 28, pp. 561-568, 2000.
[36] Shy, S. S., I, W. K., Lin, M. L., “A New Cruciform Burner and its Turbulence Measurements for Premixed Turbulent Combustion Study,” Exp. Therm. Fluid Sci. Vol. 20, pp. 105-114, 2000.
[37] Yang, T. S., Shy, S. S., Chyou, Y. P., “Spatiotemporal Intermittency Measurements in a Gas-Phase Near-Isotropic Turbulence Using High-Speed DPIV and Wavelet Analysis,” J. Mech. Vol. 21, pp. 157-169, 2005.
[38] Yang, T. S., Shy, S. S., “Two-Way Interaction between Solid Particles and Homogeneous Air Turbulence: Particle Settling Rate and Turbulence Modification Measurements,” J. Fluid Mech. Vol. 526, pp. 171-216, 2005.
[39] Shapiro, A. H., The Dynamics and Thermodynamics of Compressible Fluid Flow 1, Ronald Press, 1953.
[40] Law, C. K., Jomaas, G. and Bechtold, J. K., “Cellular instabilities of expanding hydrogen/propane spherical flames at elevated pressures: Theory and experiment”, Proc. Combust. Inst., Vol. 30, pp. 159-167, 2005.
[41] 邱建文,“氫氣/一氧化碳合成氣於高壓層流與紊流環境下肢燃燒速度量測”,國立中央大學能源工程研究所,碩士論文,2011年。
[42] Jmaas, G., Law, C. K., Bechtold, J. K., “On transition to cellularity in expanding spherical flames”, J. Fluid Mech, Vol. 583, pp. 1-26, 2007.