跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張喬惠
Chiao-Hui Chang
論文名稱: 樣本數之決定-強韌有母數法
Determining sample sizes─Parametric robust approaches
指導教授: 鄒宗山
Tsung-Shan Tsou
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 統計研究所
Graduate Institute of Statistics
畢業學年度: 92
語文別: 中文
論文頁數: 67
中文關鍵詞: 樣本數強韌迴歸
外文關鍵詞: robust regression, sample size
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在統計分析上,樣本數決定的主要目的是希望有足夠的樣本,使得在做統計檢定時能達到事先決定的型一誤差機率和檢定力。而在許多分析進行之前,常會先抽一組小樣本,來估計所假設模型中的參數,進而預測所需要的樣本數。但如果假設的模型和真正的資料分配不符時,那麼所決定的樣本數將不正確。因此會使檢定的型一誤差機率和檢定力達不到原先的要求。
    Royall & Tsou (2003) 提出強韌概似函數 (robust likelihood function) 的觀念。在樣本數大的時候,即使資料的真正分配未知,強韌概似函數還是能正確提供關於有興趣參數的資訊。而Tsou (2004) 則將上述強韌概似函數的概念推廣到在廣義線性模型之下的迴歸參數推論問題。
    本文主要利用強韌迴歸方法來決定樣本數,並比較利用強韌常態模型、強韌伽瑪模型及強韌逆高斯模型時,所需要樣本數大小之間的差異。


    In statistical analysis, the capital purpose of determining sample size is to obtain enough sample size in order to achieve the probability of type one error and power. Before analyzing, we usually take a small sample size to estimate parameters in model, then to calculate sample size. But, if the model is wrong, the sample size is incorrect. Thus, the probability of type one error and power will not achieve the goal.
    Royall & Tsou (2003) brought up robust likelihood function., Even we don’t know the real distribution of data, robust likelihood function will provide correct information of parameters of interest when sample size is large. And Tsou (2004) spread it to general linear model.
    The paper use the method of robust regression to determine sample size, and compare sample size in robust normal model, robust gamma model and robust inverse Gaussian model.

    第一章 緒論…………………………………………………………………..1 第二章 文獻回顧……………………………………………………………..3 2.1 兩母體平均數的比較…………………………………………………3 2.2 線性迴歸模型…………………………………………………………5 第三章 兩母體平均數的比較………………………………………………..6 3.1 常態實作模型的修正項……………………………………………..11 3.2 伽瑪實作模型的修正項……………………………………………..18 3.3 逆高斯實作模型的修正項…………………………………………..25 第四章 線性迴歸模型……………………………………………………....32 4.1 常態實作模型的修正項……………………………………………..35 4.2 伽瑪實作模型的修正項……………………………………………..37 4.3 逆高斯實作模型的修正項…………………………………………..39 第五章 模擬研究……………………………………………………………41 5.1 模擬方法……………………………………………………………..41 5.2 模擬結果……………………………………………………………..64 第六章 結論…………………………………………………………………66 參考文獻…………………………………………………………………………67

    Hsieh, F. Y., Bloch, D. A. and Larsen, M. D. (1998). A simple method of sample
    size calculation for linear and logistic regression. Statistics in Medicine.
    Johuson, N. L. and Kotz, S. (1970). Distributions in statistics. Houghton
    Mifflin Company: Boston.
    Machin, D., Campbell M. J., Fayers, P. M., and Pinol, A. P. Y. (1997). Sample
    size tables for clinical studies. Blackwell Science: Oxford.
    Royall, R. M. and Tsou, T-S (2003). Interpreting statistical evidence using
    imperfect models: Robust adjusted likelihood function. JRSS-B, 65, 391-404.
    Schouten, H. J. A. (1999). Sample size formula with a continuous outcome for
    unequal group sizes and unequal variances. Statistics in Medicine, 18, 87-91.
    Singer, J. S. (2001). A simple procedure to compute the sample size needed to
    compare two independent groups when the population variances are unequal.
    Statistics in Medicine, 20, 1089-1095.
    Sokal, R. R. and Rohlf, F. J. Biometry, W. H. (1995). Freeman and company. New
    York, p. 578.
    Tsou, T-S (2004). Parametric robust inferences for regression parameters
    under generalized linear models. (Submitted)
    Wei, P. and Melanie, M. W. (2002). Small-sample adjustments in using the
    sandwich variance estimator in generalized estimating equations. Statistics
    in Medicine, 21, 1429-1441.
    Wolfe, R. and Carlin, J. B. (1999). Sample-size calculation for a log-
    transformed outcome measure. Controlled Clinical Trials, 20, 547-554.

    QR CODE
    :::