| 研究生: |
李嘉仁 Jia-Ren Lee |
|---|---|
| 論文名稱: |
平流層侵入對東亞地區自由對流層臭氧之影響 |
| 指導教授: |
林能暉
Neng-Huei Lin |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 106 |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
平流層侵入現象發生時會將具有高濃度臭氧的乾燥氣團,由平流層迅速的傳送至對流層中,造成平流層侵入的主因為對流層頂褶皺、鋒面系統過境、地面高壓系統和大氣高層的割離低壓。本研究使用2006-2011年間鹿林山空氣品質背景測站(23.47°N, 120.87°E, 2862 m)所量測之微量氣體和氣象資料,來判別影響東亞副熱帶地區的平流層侵入事件。
透過本研究所建之快速篩選方法,一共篩選出54個影響鹿林山測站的平流層侵入事件,研究結果顯示2006-2011年間平流層侵入事件多集中於秋末至春初(佔總事件數57% )。5年來鹿林山測站的臭氧平均濃度為32.8 ± 15.2 ppb,而侵入事件對臭氧平均增加量為13.5 ± 6.1 ppb。透過使用Modern Era Retrospective Analysis-2 (MERRA-2) 資料可將平流層侵入事件之氣團來源分為三類,分別為(1)發生於臺灣上空;(2)發生於中國華中和華南一帶後傳輸至台灣;(3)發生於西北太平洋上空後再向西南傳輸至台灣。
個案分析結果顯示夏、冬季之發生機制不同,東亞地區冬季時由於大陸高壓系統向南推移,使副熱帶噴流較靠近台灣,由對流層頂褶皺之位置可發現平流層侵入現象;夏季時由於大陸高壓與噴流系統減弱,導致平流層侵入現象之主因為颱風。鹿林山測站之高度介於中低自由對流層與邊界層之上,且不易受地面都市污染物影響,而其位置鄰近冬季副熱帶噴流南緣、夏季時為東亞地區受颱風侵襲第一線,透過本篇研究之結果證明鹿林山確實可做為東亞副熱帶地區平流層侵入之觀測點。
Abstract
Stratospheric intrusion (SI) often brings ozone rich air with low humidity from the stratosphere rapidly deep into the troposphere. Tropopause folds, frontal passages, surface high-pressure systems, and cutoff lows mainly counted for the occurrence of SI. In this study we present 5 years of ozone data measured at Lulin Atmospheric Background Station (LABS, 23.47°N, 120.87°E, 2862 m a.s.l.) to investigate the characteristics of SI events occurred in the subtropical East Asia during the period of April 2006 to March 2011.
A fast-screening algorithm was proposed to sift the SI events at the LABS. The ozone was increased approximately 13.5±6.1 ppb on average during the 54 detected SI events, whereas the mean ozone mixing ratio was 32.8±15.2 ppb over the 5 years. By using the Modern Era Retrospective Analysis - 2 (MERRA-2) assimilated data provided by NASA/GSFC, three types of SI events were classified as follows - (1) SI occurred around Taiwan Island, (2) SI occurred in central China and then transported to Taiwan surrounding area, and (3) SI occurred in Northwest Pacific and then transported to Taiwan surrounding area.
From the results of case studies observed at the LABS, the subtropical jet stream was dragged to Taiwan surrounding area due to the Siberian high moving southward. As a result, SI event was occurred at tropospheric folds induced by the subtropical jet in winter. By contrast, the SI was triggered by typhoon or tropical cyclone in summer.
參考資料
Ambrose, J. L., D. R. Reidmiller, and D. A. Jaffe (2011), Causes of high O3 in the lower free troposphere over the Pacific Northwest as observed at the Mt. Bachelor Observatory, Atmospheric Environment, 45, 5302-5315.
Chou, C. C. K., S. C. Liu, C. Y. Lin, C. J. Shiu, and K. H. Chang (2006), The trend of surface ozone in Taipei, Taiwan, and its causes: Implications for ozone control strategies, Atmospheric Environment, 40, 3898-3908.
Cooper, O. R., D. Parrish, J. Ziemke, N. Balashov, M. Cupeiro, I. Galbally, S. Gilge, L. Horowitz, N. Jensen, and J. F. Lamarque (2014), Global distribution and trends of tropospheric ozone: An observation-based review, Elementa: Science of the Anthropocene, 2, 2325-1026.
Cristofanelli, P., P. Bonasoni, L. Tositti, U. Bonafe, F. Calzolari, F. Evangelisti, S. Sandrini, and A. Stohl (2006), A 6‐year analysis of stratospheric intrusions and their influence on ozone at Mt. Cimone (2165 m above sea level), Journal of Geophysical Research: Atmospheres, 111, D03306, doi:10.1029/2005JD006553.
Cristofanelli, P., A. Bracci, M. Sprenger, A. Marinoni, U. Bonafè, F. Calzolari, R. Duchi, P. Laj, J. Pichon, and F. Roccato (2010), Tropospheric ozone variations at the Nepal Climate Observatory-Pyramid (Himalayas, 5079 m asl) and influence of deep stratospheric intrusion events, Atmospheric Chemistry and Physics, 10, 6537-6549.
Das, S. S., M. Venkat Ratnam, K. Uma, A. Patra, K. Subrahmanyam, I. Girach, K. Suneeth, K. Kumar, and G. Ramkumar (2016), Stratospheric intrusion into the troposphere during the tropical cyclone Nilam (2012), Quarterly Journal of the Royal Meteorological Society, 142, 2168-2179.
Dempsey, F. (2014), Observations of stratospheric O3 intrusions in air quality monitoring data in Ontario, Canada, Atmospheric Environment, 98, 111-122.
Dessler, A. (2000), Chemistry and Physics of stratospheric ozone, 214 pp., Academic Press, San Diego, CA.
Ding, A., T. Wang, V. Thouret, J. Cammas, and P. Nédélec (2008), Tropospheric ozone climatology over Beijing: analysis of aircraft data from the MOZAIC program, Atmospheric Chemistry and Physics, 8, 1–13.
Fadnavis, S., T. Chakraborty, and G. Beig (2010), Seasonal stratospheric intrusion of ozone in the upper troposphere over India, Annales Geophysicae, 28, 2149-2159.
Gelaro, R., W. McCarty, M. J. Suárez, R. Todling, A. Molod, L. Takacs, C. Randles, A. Darmenov, M. G. Bosilovich, and R. Reichle (2017), The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2), Journal of Climate, 5419-5454.
IPCC (2013), Climate Change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, edited, Cambridge University Press, 1535 pp., Cambridge Univ. Press, Cambridge, U. K., and New York.
Jiang, Y., T. Zhao, J. Liu, X. Xu, C. Tan, X. Cheng, X. Bi, J. Gan, J. You, and S. Zhao (2015), Why does surface ozone peak before a typhoon landing in southeast China?, Atmospheric Chemistry and Physics, 15, 13331-13338.
Jordan, C., J. E. Dibb, and R. Finkel (2003), 10Be/7Be tracer of atmospheric transport and stratosphere‐troposphere exchange, Journal of Geophysical Research: Atmospheres, 108, 4234, doi:10.1029/2002JD002395.
Kleinman, L. I. (2005), The dependence of tropospheric ozone production rate on ozone precursors, Atmospheric Environment, 39, 575-586.
Komhyr, W., R. Barnes, G. Brothers, J. Lathrop, and D. Opperman (1995), Electrochemical concentration cell ozonesonde performance evaluation during STOIC 1989, Journal of Geophysical Research: Atmospheres, 100, 9231-9244.
Koster, R. D., W. McCarty, L. Coy, R. Gelaro, A. Huang, D. Merkova, E. B. Smith, M. Sienkiewicz, and K. Wargan (2016), MERRA-2 Input Observations: Summary and Assessment, https://ntrs.nasa.gov/search.jsp?R=20160014544
Levelt, P. F., G. H. van den Oord, M. R. Dobber, A. Malkki, H. Visser, J. de Vries, P. Stammes, J. O. Lundell, and H. Saari (2006), The ozone monitoring instrument, IEEE Transactions on geoscience and remote sensing, 44, 1093-1101.
Lin, M. Y., A. M. Fiore, O. R. Cooper, L. W. Horowitz, A. O. Langford, H. Levy, B. J. Johnson, V. Naik, S. J. Oltmans, and C. J. Senff (2012), Springtime high surface ozone events over the western United States: Quantifying the role of stratospheric intrusions, Journal of Geophysical Research: Atmospheres, 117, D00V22, doi:10.1029/2012JD018151
Lin, Y. C., C. A. Huh, S. C. Hsu, C. Y. Lin, M. C. Liang, and P. H. Lin (2014), Stratospheric influence on the concentration and seasonal cycle of lower tropospheric ozone: Observation at Mount Hehuan, Taiwan, Journal of Geophysical Research: Atmospheres, 119, 3527-3536.
Lin, Y. K., T. H. Lin, and S. C. Chang (2010), The changes in different ozone metrics and their implications following precursor reductions over northern Taiwan from 1994 to 2007, Environmental Monitoring and Assessment, 169, 143-157.
Ma, J., W. L. Lin, X. D. Zheng, X. B. Xu, Z. Li, and L. L. Yang (2014), Influence of air mass downward transport on the variability of surface ozone at Xianggelila Regional Atmosphere Background Station, southwest China, Atmospheric Chemistry and Physics, 14, 5311-5325.
McConnell, R., K. Berhane, F. Gilliland, S. J. London, T. Islam, W. J. Gauderman, E. Avol, H. G. Margolis, and J. M. Peters (2002), Asthma in exercising children exposed to ozone: a cohort study, The Lancet, 359, 386-391.
Okamoto, S., and H. Tanimoto (2016), A review of atmospheric chemistry observations at mountain sites, Progress in Earth and Planetary Science, 3, 34-86.
Oltmans, S., A. Lefohn, D. Shadwick, J. Harris, H. Scheel, I. Galbally, D. Tarasick, B. Johnson, E.-G. Brunke, and H. Claude (2013), Recent tropospheric ozone changes–A pattern dominated by slow or no growth, Atmospheric Environment, 67, 331-351.
Oltmans, S. J., et al. (1998), Trends of ozone in the troposphere, Geophysical Research Letters, 25, 139-142.
Ott, L. E., B. N. Duncan, A. M. Thompson, G. Diskin, Z. Fasnacht, A. O. Langford, M. Lin, A. M. Molod, J. E. Nielsen, and S. E. Pusede (2016), Frequency and impact of summertime stratospheric intrusions over Maryland during DISCOVER‐AQ (2011): New evidence from NASA's GEOS‐5 simulations, Journal of Geophysical Research: Atmospheres, 121, 3687-3706.
Ou-Yang, C.-F., H.-C. Hsieh, S.-H. Wang, N.-H. Lin, C.-T. Lee, G.-R. Sheu, and J.-L. Wang (2013), Influence of Asian continental outflow on the regional background ozone level in northern South China Sea, Atmospheric environment, 78, 144-153.
Ou-Yang, C. F., N. H. Lin, C. C. Lin, S. H. Wang, G. R. Sheu, C. T. Lee, R. C. Schnell, P. M. Lang, T. Kawasato, and J. L. Wang (2014), Characteristics of atmospheric carbon monoxide at a high-mountain background station in East Asia, Atmospheric Environment, 89, 613-622.
Ou-Yang, C. F., N. H. Lin, G. R. Sheu, C. T. Lee, and J. L. Wang (2012), Seasonal and diurnal variations of ozone at a high-altitude mountain baseline station in East Asia, Atmospheric Environment, 46, 279-288.
Parrish, D. D., M. Trainer, J. S. Holloway, J. E. Yee, M. S. Warshawsky, F. C. Fehsenfeld, G. L. Forbes, and J. L. Moody (1998), Relationships between ozone and carbon monoxide at surface sites in the North Atlantic region, Journal of Geophysical Research: Atmospheres, 103, 13357-13376.
Pittman, J. V., L. L. Pan, J. C. Wei, F. W. Irion, X. Liu, E. S. Maddy, C. D. Barnet, K. Chance, and R. S. Gao (2009), Evaluation of AIRS, IASI, and OMI ozone profile retrievals in the extratropical tropopause region using in situ aircraft measurements, Journal of Geophysical Research: Atmospheres, 114. D24109, doi:10.1029/2009JD012493.
Poulida, O., R. R. Dickerson, and A. Heymsfield (1996), Stratosphere‐troposphere exchange in a midlatitude mesoscale convective complex: 1. Observations, Journal of Geophysical Research: Atmospheres, 101, 6823-6836.
Rao, M. V., H.-i. Lee, R. A. Creelman, J. E. Mullet, and K. R. Davis (2000), Jasmonic acid signaling modulates ozone-induced hypersensitive cell death, The Plant Cell, 12, 1633-1646.
Scheel, H., R. Sladkovic, and H. J. Kanter (1999), Ozone variations at the Zugspitze (2962 m asl) during 1996-1997, WIT Transactions on Ecology and the Environment, 35, 264-268.
Škerlak, B., M. Sprenger, S. Pfahl, E. Tyrlis, and H. Wernli (2015), Tropopause folds in ERA‐Interim: Global climatology and relation to extreme weather events, Journal of Geophysical Research: Atmospheres, 120, 4860-4877.
Sprenger, M., M. Croci Maspoli, and H. Wernli (2003), Tropopause folds and cross‐tropopause exchange: A global investigation based upon ECMWF analyses for the time period March 2000 to February 2001, Journal of Geophysical Research: Atmospheres, 108, 8521, doi:10.1029/2002JD002587.
Stevenson, D., F. Dentener, M. Schultz, K. Ellingsen, T. Van Noije, O. Wild, G. Zeng, M. Amann, C. Atherton, and N. Bell (2006), Multimodel ensemble simulations of present‐day and near‐future tropospheric ozone, Journal of Geophysical Research: Atmospheres, 111, D08301, doi:10.1029/2005JD006338.
Stohl, A., N. Spichtinger-Rakowsky, P. Bonasoni, H. Feldmann, M. Memmesheimer, H. Scheel, T. Trickl, S. Hübener, W. Ringer, and M. Mandl (2000), The influence of stratospheric intrusions on alpine ozone concentrations, Atmospheric Environment, 34, 1323-1354.
Trickl, T., H. Feldmann, H. J. Kanter, H. E. Scheel, M. Sprenger, A. Stohl, and H. Wernli (2010), Forecasted deep stratospheric intrusions over Central Europe: case studies and climatologies, Atmospheric Chemistry and Physics, 10, 499-524.
Wang, T., X. Wei, A. Ding, S. C. Poon, K. Lam, Y. Li, L. Chan, and M. Anson (2009), Increasing surface ozone concentrations in the background atmosphere of Southern China, 1994-2007, Atmospheric Chemistry and Physics, 9, 6217–6227
Wargan, K., G. Labow, S. Frith, S. Pawson, N. Livesey, and G. Partyka (2017), Evaluation of the Ozone Fields in NASA's MERRA-2 Reanalysis, Journal of Climate, 30, 2961-2988.
Waters, J. W., L. Froidevaux, R. S. Harwood, R. F. Jarnot, H. M. Pickett, W. G. Read, P. H. Siegel, R. E. Cofield, M. J. Filipiak, and D. A. Flower (2006), The earth observing system microwave limb sounder (EOS MLS) on the Aura satellite, IEEE Transactions on Geoscience and Remote Sensing, 44, 1075-1092.