跳到主要內容

簡易檢索 / 詳目顯示

研究生: 方鎮豪
Jhen-Hao Fang
論文名稱: 迴轉式壓縮機熱流模擬分析
Numerical Analysis of Thermal Flow for Rotary Compressors
指導教授: 吳俊諆
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 64
中文關鍵詞: 迴轉式壓縮機過濾瓶動網格計算流體力學
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文利用FLUENT軟體進行迴轉式壓縮機熱流模擬,分析模型包含過濾瓶及壓縮腔兩個部分。過濾瓶模擬的目的為了解冷媒經過過濾瓶內部的流動後,流入壓縮腔的流動特性,以便設定壓縮腔入口邊界條件;在壓縮腔的模擬中,使用動網格模擬轉子運動,分析壓縮腔出口的週期流動特性。
    本文應用k-ε紊流模型以穩態模擬過濾瓶,並以實驗壓力為邊界條件,模擬結果顯示過濾瓶壓力差主要在流場尺寸出現變化的位置(入口管與瓶身連接處、內管入口處),過濾瓶出口溫度可視為均勻溫度場,而出口速度在彎管處外側較高,內側較低。以非穩態計算搭配動網格模擬壓縮腔,得到壓縮腔的壓力、速度與溫度的週期性變化,在開口開啟前,壓縮區內壓力隨著轉子轉動造成壓縮作用而使冷媒增壓增溫,當壓縮區內在0.6個週期時壓力達到開啟開口的壓力條件,開口開啟而腔內壓力會維持直到轉子轉過滑片,壓縮區與進氣區連通,使開口關閉。比較邊界條件為定壁溫與絕熱的差異,定壁溫造成冷媒的升溫比壁面絕熱多了10%的升溫。


    This thesis presents the numerical simulation of the rotary compressor including the accumulator and the compression chamber by using the software FLUENT. The analysis the periodic flow characteristics of the outlet in compression chamber is executed by simulation of dynamic meshes of rotor motion.
    The k-𝜀 turbulent model is applied for the calculation of the accumulator. The results predict that the pressure varies at the different flow region (the connection between inflow tube and accumulator, the connection between the accumulator, and the outflow tube). The temperature at the outlet of the accumulator is predicted as uniformly distributed, and the velocity is higher at the outer than at the inside of the bend on the outflow tube. The refrigerant’s pressure in the compression zone increases with rotor motion before the outlet valve opened. At about 0.6 period, the pressure reaches the condition of valve-opening. The outlet valve opens and the pressure maintains a constant value until rotor sweep across the vane so that the compression zone and intake zone are connected, and the outlet valve closed. Compare two thermal boundary conditions of the compression chamber (constant wall temperature and insulated wall), the refrigerant’s temperature is 10% higher than that of the insulated wall.

    中文摘要……………………………………………………………………………………………………… i 英文摘要……………………………………………………………………………………………………… ii 致謝…………………………………………………………………………………………………………… iii 目錄…………………………………………………………………………………………………………… iv 圖目錄………………………………………………………………………………………………………… vi 表目錄………………………………………………………………………………………………………… x 符號對照表…………………………………………………………………………………………………… x 第一章 緒論………………………………………………………………………………………………… 1 1.1 研究背景…………………………………………………………………………………………… 1 1.2 冷凍循環簡介……………………………………………………………………………………… 1 1.3 文獻回顧…………………………………………………………………………………………… 4 1.4 研究動機………………………………………………………………………………………… 14 1.5 論文架構………………………………………………………………………………………… 14 第二章 計算分析方法………………………………………………………………………………… 16 2.1 計算流體力學簡介……………………………………………………………………………… 16 2.1.1 FLUENT軟體簡介………………………………………………………………………… 16 2.1.2 離散法則…………………………………………………………………………………… 17 2.1.3 空間離散…………………………………………………………………………………… 17 2.1.4 密度基準求解器……………………………………………………………………………18 2.1.5 模擬計算設定…………………………………………………………………………… 19 2.2 FLUENT數值模擬……………………………………………………………………………… 20 2.2.1 設定流體性質…………………………………………………………………………… 20 2.2.2 設定邊界及初始條件……………………………………………………………… 21 2.2.3 設定流場模式…………………………………………………………………………… 22 2.2.3.1 紊流模型……………………………………………………………………………… 22 2.2.3.2 求解方法…………………………………………………………………………………23 2.3.4 CFD-POST後處理技術………………………………………………………………………23 第三章 模擬結果分析……………………………………………………………………………………26 3.1 過濾瓶幾何建模………………………………………………………………………………… 29 3.2 過濾瓶網格配置………………………………………………………………………………… 31 3.3 過濾瓶網格獨立性分析…………………………………………………………………………33 3.4 過濾瓶流場模擬結果……………………………………………………………………………35 3.5 壓縮腔幾何建模………………………………………………………………………………… 45 3.6 壓縮腔動網格配置……………………………………………………………………………… 47 3.7壓縮腔模擬結果……………………………………………………………………………………48 3.7.1壓縮腔熱流場剖面分布……………………………………………………………………49 3.7.2壓縮腔流場動態分布……………………………………………………………………… 54 3.8壓縮腔壁面邊界絕熱及定壁溫之結果比較……………………………………………… 58 第四章 結論…………………………………………………………………………………………………61 4.1 結論………………………………………………………………………………………………… 61 參考文獻……………………………………………………………………………………………………… 63

    1. I. Dincer, M. Kanoglu, Refrigeration Systems and Applications, (2010) Second Edition, Wiley.
    2. T. Yokoyama, K. Shingu, S. Sekiya, H. Maeyama, N. Nishimura, CFD analysis inside a CO2 compressor shell to improve oil separation and reduce the shell size, Int. Compressor Engineering Conf. at Purdue, 2012.
    3. K. N. Yun, Designing a function-enhanced suction accumulator for rotary compressor, (1998) Int. Compressor Engineering Conf., Paper 1315.
    4. K. W. Yun, Compressor suction accumulator with pre-charged oil, (1998) Int. Compressor Engineering Conf., Paper 1345.
    5. S.-J. Lee, H.-B. Kim, J.-K. Huh, S.-J. Lee, B.-H. Ahn, Quantitative analysis of flow inside the accumulator of a rotary compressor, (2003) Int. J. of Refrigeration 26, 321-327.
    6. T. Ogata, H. Hasegawa, A. Okaichi, F. Nishiwaki, Reduction of Oil Discharge for Rolling Piston Compressor Using CO2 Refrigerant, (2006) Int. Compressor Engineering Conf., C095.
    7. K. Sharma, V. K. Rao, M N S V Kiran, A. Gopinathan, CFD analysis of discharge gas flow in rotary compressor for OCR reduction, (2010) Int. Compressor Engineering Conf., 1224.
    8. 黃思,楊國蟒,蘇麗娟,應用動網格技術模擬分析滾動轉子壓縮機的瞬態流動,(2010)流體機械,1005-0329。
    9. I. S. Cho, J. Y. Jung, Lubrication characteristics of a rotary compressor used for refrigeration and air-conditioning systems (the influence of alternative refrigerants), (2010) J. of Mechanical Science and Technology 24(4) 851~856.
    10. H. J. Kim, Y. J. Kim, A study on the oi flow charateristics in the inventer rotary compressor, (2013) 6th Int. Conf. on Pumps and Fans with Compressors and Wind Turbines, 042004.
    11. ANSYS. ANSYS FLUENT User’s Guide. Canonsburg, PA: ANSYS, Inc., 2012.
    12. ANSYS. ANSYS FLUENT Theory Guide. Canonsburg, PA: ANSYS, Inc., 2012.

    QR CODE
    :::