| 研究生: |
張凱威 Kai-Wei Chang |
|---|---|
| 論文名稱: |
結合掩星折射率與高光譜紅外線觀測之大氣溫溼度垂直剖面反演 The Retrieval of Atmospheric Temperature and Humidity Using Radio Occultation Refractivity and Hyperspectral Infrared Radiances |
| 指導教授: |
任玄
Hsuan Ren 劉千義 Chian-Yi Liu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
太空及遙測研究中心 - 遙測科技碩士學位學程 Master of Science Program in Remote Sensing Science and Technology |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 高光譜 、掩星 、溫度反演 、溼度反演 、遙測 |
| 外文關鍵詞: | hyperspectral, radio occlutation, temperature retrieval, humiditiy retrieval, remote sensing |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
高光譜紅外輻射儀以及掩星技術之觀測皆提供大量的大氣觀測,而先前研究指出此兩種觀測擁有互補之性質。來自高光譜紅外線觀測的溫度反演,在高對流層以及低平流層之區域常有較大的誤差,而掩星觀測在此高度則是擁有相對較高的準確度。因此,若結合掩星以及高光譜之觀測,則可能改善原單以紅外線反演得到的溫度與溼度垂直剖面。此研究提出一項同時使用掩星折射率以及紅外線亮溫之反演演算法,用於溫度以及溼度的垂直剖面反演。使用此研究中提出之反演法所得到的溫度剖面,在 100 百帕到 300 百帕之間,其均方根差之降低大約為 24%(0.36K;與再分析場比較時)與35%(0.66K;與探空感測比較時)。在高對流層對於溫度反演有所改進之外,溼度的反演上亦有改善,在100 百帕以下的平均均方根差之降低最大高達 43%(0.57g/kg)。研究中提出的演算法所得到的反演產品,與再分析場以及探空氣球觀測之各項比較後,其溼度反演之準確度於每項實驗皆優於單以紅外亮溫反演的產品,而其溫度反演則是在高層對流層上之改善最為顯著。
Hyperspectral infrared spectrometers and the radio occultation (RO) technique have become crucial for observing the atmosphere, and past studies showed that these two types of observations have complementary characteristics. Temperature retrievals from infrared sounders, such as the Atmospheric InfraRed Sounder (AIRS), tend to have higher error in the upper troposphere. In contrast, radio occultation measurements have a high vertical resolution, are highly accurate for temperature estimates in the upper troposphere and lower stratosphere, and can potentially be used to improve radiance-based temperature estimates. This study presents a physical-statistical algorithm which uses RO-derived refractivity and spectrometer radiances simultaneously to estimate temperature and humidity vertical profiles, demonstrated with measurements from FORMOSAT-3/COSMIC and AIRS. Comparison of simultaneously derived profiles and AIRS-alone derived profiles showed that the impact of RO observations to be most apparent in the upper troposphere between 100 hPa and 300hPa, where it reduced the root-mean-square difference of estimated temperature with a minimum reduction of 24\% (0.36 K) and a maximum of 35\% (0.66 K). In addition to having improved temperature profile retrievals in the upper troposphere, the humidity retrievals were also improved; the average root-mean-square difference below 100 hPa was reduced up to 43\% (0.57 g/kg) in comparison to radiosondes. In comparison to different reanalysis datasets and radiosonde soundings, the humidity profiles retrieved using the proposed algorithm were overall better than the infrared-only retrievals in all of the comparisons, and the temperature profiles improved upon the infrared-only most notably in the upper troposphere.
[1] Anthes, R. A., Bernhardt, P. A., Chen, Y., Cucurull, L., Dymond, K. F., Ectors, D., Healy,
S. B., Ho, S.-P., Hunt, D. C., Kuo, Y.-H., Liu, H., Manning, K., McCormick, C., Mehan,
T. K., Randel, W. J., Rocken, C., Schreiner, W. S., Sokolovskiy, S. V., Syndergaard,
S., Thompson, D. C., Trenberth, K. E., Wee, T. K., Yen, N. L., Zeng, Z. (2008). The
COSMIC/FORMOSAT-3 mission: Early results. Bull. Amer. Meteorol., 89(3), 313-333.
[2] Ao, C. O., Meehan, T. K., Hajj, G. A., Mannucci, A. J., Beyerle, G. (2003). Lower tropo-
sphere refractivity bias in GPS occultation retrievals. J. Geophys. Res., 108(D18), 4577,
doi:10.1029/2002JD003216.
[3] Aumann, H. H., and coauthors (2003). AIRS/AMSU/HSB on the Aqua mission: Design,
science objectives, data products, and processing systems. IEEE Trans. Geosci. Remote
Sens., 41, 253-264.
[4] Borbas, E., Menzel, W. P., Li, J., Woolf, H. M. (2003). Combining radio occultation refrac-
tivities and IR/MW radiances to derive temperature and moisture profiles: A simulation
study plus early results using CHAMP and ATOVS. J. Geophys. Res., 108(D21), 4676,
doi:10.1029/2003JD003386.
[5] Borbas, E. E., Menzel, W. P., Weisz, E., Devenyi, D. (2008). Deriving Atmospheric
Temperature of the Tropopause Region-Upper Troposphere by Combining Information
from GPS Radio Occultation Refractivity and High-Spectral-Resolution Infrared Radi-
ance Measurements. J. Appl. Meteor., 47, 2300-2310.
[6] Collard, A. D., Healy, S. B. (2003). The combined impact of future space-based atmo-
spheric sounding instruments on numerical weather-prediction analysis fields: A simula-
tion study. Q. J. R. Meteorol. Soc., 129, 2741-2760.
[7] Divakarla, M. G., Barnet, C. D., Goldberg, M. D., McMillin, L. M., Maddy, E., Wolf,
W., Zhou, L., Liu, X. (2006). Validation of Atmospheric Infrared Sounder temperature
and water vapor retrievals with matched radiosonde measurements and forecasts. J. Geo-
phys. Res., 111(D08S15), doi:10.1029/2005JD006116.
[8] Eyre, J. R. (1989). Inversion of cloudy satellite sounding radiances by nonlinear optimal
estimation. I: Theory and simulation for TOVS. Q. J. R. Meteorol. Soc., 115, 1001-1026.
[9] Hayashi, H., Furumoto, J. I., Lin, X., Tsuda, T., Shoji, Y., Aoyama, Y., Mu-
rayama, Y. (2009): Validation of refractivity profiles retrieved from FORMOSAT-
3/COSMIC radio occultation soundings: Preliminary results of statistical compar-
isons utilizing balloon-borne observations. Terr. Atmos. Ocean. Sci., 20, 51-58, doi:
10.3319/TAO.2008.01.21.01(F3C).
[10] Healy, S. B. (2001). Radio occultation bending angle and impact parameter errors caused
by horizontal refractive index gradients in the troposphere: A simulation study. J. Geo-
phys. Res., 106, 11,875-11,889, doi:10.1029/2001JD900050.
[11] Heise, S., Wickert, J., Beyerle, G., Schmidt, T., Smit, H., Cammas, J-P., Rothacher,
N. (2008). Comparison of Water Vapor and Temperature Results from GPS Radio Occulta-
tion Aboard CHAMP with MOZAIC Aircraft Measurements. IEEE Trans. Geosci. Remote
Sens., 46, 11, 3406-3411.
62[12] Ho, S. P., Kuo, Y. H., Sokolovskiy, S. (2007). Improvement of the Temperature and Mois-
ture Retrievals in the Lower Troposhere Using AIRS and GPS Radio Occultation Mea-
surements. J. Atmos. Oceanic Technol., 24, 1726-1739.
[13] Huang, H.-L., Antonelli, P. (2001). Application of principal component analysis to high-
resolution infrared measurement compression and retrieval. J. Appl. Meteor., 40, 365388.
[14] Kuo, Y.-H., Wee, T.-K., Sokolovskiy, S., Rocken, C., Schreiner, W., Hunt, D., Anthes,
R. A. (2004). Inversion and Error Estimation of GPS Radio Occultation Data. J. Me-
teor. Soc. Japan, 82, 507-531.
[15] Kursinki, E. R., Hajj, G. A., Schofield, J. T., Linfield, R. P. (1997). Observing Earth’s
atmosphere with radio occultation measurements using the Global Positioning System.
J. Geophys. Res., 102(19), 23429-23465.
[16] Kwon, E.-H., Sohn, B. J., Smith, W. L., Li, J. (2012). Validating IASI temperature and
moisture sounding retrievals over East Asia using radiosonde observations. J. Atmos. Sci.,
29, 1250-1262
[17] Kwon, E.-H., Li, J., Li, J., Sohn, B. J., Weisz, E. (2012). Use of total precipitable water
classification and a priori error and quality control in atmospheric temperature and water
vapor sounding retrieval. Adv. Atmos. Sci., 29,, 1-11.
[18] LeMarshall, J., et al. (2006). Improving global analysis and forecasting with AIRS.
Bull. Am. Meteorol. Soc., 87, 891894, doi:10.1175/ BAMS-87-7-891.
[19] Li, J. (1994). Temperature and water vapor weighting functions from radiative transfer
equation with surface emissivity and solar reflectivity. Adv. Atmos. Sci., 11, 421-426.
[20] Li, J., Huang, H.-L. (1999). Retrieval of atmospheric profiles from satellite sounder mea-
surements by use of the discrepancy principle. Applied Optics, 38, 916-923.
[21] Li, J., Liu, C.-Y., Huang, H.-L., Schmit, T. J., Wu, X., Menzel, W. P., Gurka, J. J. (2005).
Optimal cloud-clearing for AIRS radiances using MODIS. IEEE Trans. Geosci. Remote
Sens., 43, 6, 1266-1278.
[22] Li, J., Li, J., Weisz, E., Zhou, D. (2007). Physical retrieval of surface emissivity spec-
trum from hyper- spectral infrared radiances. Geophys. Res. Lett., 34, L16812, doi:
10.1029/2007GL030543.
[23] Li, J., Wolf, W., Menzel, W., Zhang, W., Huang, H.-L., Achtor, T. (2000). Global
soundings of the atmosphere from ATOVS measurements: The algorithm and validation.
J. Appl. Meteor., 39, 1248-1268.
[24] List, R. J. (1951). Smithsonian Meteorological Tables, 6th rev. ed. Smithsonian Institute
Press, 527pp.
[25] Liu, C.-Y., Liu, G.-R., Lin, T.-H., Lin, C.-C., Ren, H. (2013). Using Surface Station Ob-
servations to Improve Retrievals from Hyperspectral Infrared Instruments. IEEE Trans.
Geosci. Remote Sens. (Under revision)
[26] Liu, C.-Y., Li, J., Weisz, E., Schmit, T. J., Ackerman, S. A., Huang H.-L. (2008). Syn-
ergistic use of AIRS and MODIS radiance measurements for atmospheric profiling. Geo-
phys. Res. Lett., 35, L21802, doi:10.1029/2008GL035859.
63[27] Narayana Rao, D., Ratnam, M. V., Mehta, S., Nath, D. Basha, S. G., Rao, V. V. M. J.,
Murthy, B. V. K., Tsuda, T., Nakamura, K. (2009). Validation of the COSMIC radio oc-
cultation data over gadanki (13.48N, 79.2E): A tropical region. Terr. Atmos. Ocean. Sci.,
20, 59-70, doi: 10.3319/ TAO.2008.01.23.01(F3C).
[28] Rodgers, C. D. (1976). Retrievals of Atmospheric Temperature and Composition from
Remote Measurements of Thermal Radiation. Rev. Geophys. Space Phys., 14, 609-624.
[29] Rodgers, C. D., Connor, B. J. (2003). Intercomparison of remote sounding instruments.
J. Geophys. Res,, 108(D3), 4116, doi:10.1029/2002JD002299
[30] Seemann, S. W., Li, J., Menzel, W. P., Gumley, L E. (2003). Operational retrieval of
temperature, moisture and ozone from MODIS infrared radiances. J. Appl. Meteor., 42,
1072-1091.
[31] Smith, W. L., Woolf, H. M. (1976). The Use of Eigenvectors of Statistical Covariance
Matrices for Interpreting Satellite Sounding Radiometer Observations. J. Atmos. Sci., 33,
1127-1140.
[32] Strow, L. L., Hannon, S. E., Souza-Machado, S. D., Motteler, H. E., Tobin, D. (2003).
An overview of the AIRS radiative transfer model. IEEE Trans. Geosci. Remote Sens., 41,
303-313.
[33] Weisz, E., Huang, H.-L., Li, J., Borbas, E., Baggett, K., Thapliyal, P., Guan, L. (2007).
International MODIS and AIRS processing package: AIRS products and applications.
J. Appl. Remote Sens., 1(1), doi:10.1117/1.2766867.