| 研究生: |
陳勇宏 Yung-Hung Chen |
|---|---|
| 論文名稱: |
AZ31及AZ61鎂合金之晶粒細化與鈑片成形研究 A Study on Grain Refining and Plate Forming of Magnesium Alloy AZ31 and AZ61 |
| 指導教授: |
李雄
Shyong Lee |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 162 |
| 中文關鍵詞: | 鎂合金 、鈑片成形 、沖壓 、吹氣成形 、晶粒細化 、熱輥軋 、等通道彎角擠製(ECAE) |
| 外文關鍵詞: | AZ31, AZ61, Grain Refining, Rolling, ECAE |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究採用熱輥軋及等通道彎角擠製來探討可細化鎂合金晶粒程度以及對機械性質的影響,並利用沖壓、吹氣成形法探討晶粒細化前後鎂合金鈑片之成形性。
在沖壓成形實驗中,未經輥軋鈑片成形性不佳,需要420℃的高溫及10分鐘的預熱時間才能使鈑片成功成形,而利用階段沖壓則可以降低成形溫度及預熱時間。
熱輥軋研究中,AZ31鎂合金2mm厚鈑片加熱至350℃持溫10分鐘後,一次輥軋50%,可細化晶粒10μm至4.7μm,降伏強度由161MPa提升至279MPa,同時伸長率也由14.2%提升至20.9%。熱輥軋後之鎂鈑經退火處理後,可使晶粒大小之分佈更平均,且伸長率再提升。
鈑片吹氣成形研究中,晶粒細化的確能有效提升鎂鈑之成形性,經熱輥軋後的AZ31鎂鈑在300℃及5x10-3~1x10-2應變速率範圍內,伸長率可達220%。
在等通道彎角擠製(Equal Channel Angular Extrusion, ECAE)部份,AZ31鎂合金以Φ=90o、250℃一道次擠製後再以200℃擠製三道次後,晶粒細化效果最佳,由9.5μm細化至2.6μm,而機械性質也相對的提升,其中降伏強度由169MPa增加至226MPa,伸長率則由18.7﹪提升至21.7%,再經由後續退火處理,材料伸長率更大幅度的提升至29.2%。
由於ECAE與熱軋之不同加工方式,使材料呈現不同之織構組織,因而使得ECAE製程後的AZ31及AZ61材料強度皆低於熱軋後異方性較高之材料。另外在高溫性質方面,由於AZ61加工後會在晶界處生成微細之析出物,這使得其高溫之延伸率優於AZ31鎂合金。
Magnesium alloy is the lightest metal that can be employed for structural use, and there have been many researches of grain refining on this material. We will investigate the different effects on mechanical properties between two grain refining methods--(1) Rolling and (2) ECAE (Equal Channel Angular Extrusion) process. Also, the formability of un-processed and processed materials would be conferred by punch and gas forming (punch-less) method as well.
2mm of AZ31 plate reduced 50% thickness by rolling single time with hot roller after preheating 10mins at 350℃, then we can have fine grain (<5μm) materials. Meanwhile, the better yielding strength (161->279MPa) and elongation (14.2->20.9%) can be achieved by this process. In addition, this process will improve the gas formability of Magnesium Alloy. The elongation of refined AZ31 specimen could reach 220% by gas forming at 300℃ and the strain rate range of 5x10-3~1x10-2.
In ECAE experiments, after extruded one time at 250℃ and three times at 200℃ with channel angular of 90o, we could have smallest grain size decreased from 9.5 to 2.6μm. Equally, the strength and elongation of materials increased simultaneously after ECAE process. The ductility would have further great promotion after the post-annealing treatment.
Because of different textures, both AZ31 and AZ61 materials with more strength can be achieved by rolling than ECAE process. This phenomenon is more apparent after post-annealing treatment. Besides, fine precipitations(<1μm) will exist at grain boundaries after processed, this is the reason why AZ61 materials have more ductility than AZ31 at high temperature.
The results of this study might be used as referenced resources not only for the related academic research of Magnesium Alloy but also for the development of the real products in industry.
[1] ASM, “Magnesium Alloys”, Metals Handbook 8th Edition, Vol.8 (1976), pp.314-319.
[2] 賴耿陽, “非鐵金屬材料”, 新竹, (1998), pp.174-191.
[3] 楊萬騏, “藉著La-rich misch metal的添加及熱擠型法以改善Mg-8Al鎂合金機械性能之研究”, 國立台灣大學材料科學與工程研究所博士論文 (2003).
[4] ASM, “Magnesium Alloys”, Metals Handbook 9th Edition, Vol.6 (1985), pp.425-434.
[5] 張永耀, “金屬熔銲學”, 徐氏基金會, 台北, 下冊 (1976), pp.134-170.
[6] G. Neite, K. Kubota, K. Higashi, and F. Hemann, Materials Science and Technology, Vol. 8 VCH (1996), pp.113.
[7] J. A. Chapman, D. V. Wilson: J. Inst. Metals, 91 (1962-63), pp.35.
[8] 掘田善活, 古川稔, T. G. Langdon, 根本實, Materia, Vol.37 (1998), pp.767 (in Japanese).
[9] V. M. Segal, V.I. Reznikov, A.E. Drobyshevskiy and V.I. Kopylov, “Russian Metallurgy”, (Engl. Transl.), Vol.1 (1981), pp.115.
[10] J. Richert, M. Richert, Aluminum 62 (1986), pp.604.
[11] M. Mabuchi, H. Iwasaki, K. Yanase and K. Higashi, Scripta Materialia, Vol.36 (1997), pp.681-686.
[12] M. Mabuchi, K. Ameyama, H. Iwasaki and K. Higashi, Acta Materialia, Vol.47 (1999), pp.2047-2057.
[13] W. H. Haung﹐L. Chang﹐P. W. Kao and C. P. Chang﹐Materials Science and Engineering A307 (2001), pp.113-118.
[14] V. M. Segal﹐USSR Patent No. 575892 (1977).
[15] Y. Iwahashi﹐J. Wang﹐Z. Horita﹐M. Nemoto﹐T. G. Langdon﹐Scripta Materialia, Vol.35 (1996), pp.143-146.
[16] A. Shan﹐I. G. Moon﹐H. S. Ko﹐J. W. Park﹐ Scripta Materialia, Vol.41 (1999), pp.353-357.
[17] Y. Wu﹐I. Baker﹐Scripta Materialia, Vol.37 (1997), pp.437-442.
[18] H. S. Kim﹐Materials Science and Engineering, A315 (2001), pp.122-128.
[19] M. Furukawa, Z. Horita, M. Nemoto, and T. G. Langdon, in Ultrafine Grained Materials﹐ed. R. S. Mishra et al., The Minerals﹐Metals & Materials Society, Warrendale, PA (2000), pp.125.
[20] M. Furukawa﹐Y. Iwahashi﹐Z. Horita﹐M. Nemoto﹐and T. G. Langdon﹐Materials Science and Engineering A257 (1998), pp.328-332.
[21] Y. Iwahashi﹐Z. Horita﹐M. Nemoto﹐T. G. Langdon﹐Acta Materialia, Vol.46 (1998), pp.3317-3331.
[22] K. Oh-ishi﹐Z. Horita﹐M. Furukawa﹐M. Nemoto﹐T. G. Langdon﹐Metall.Trans. A29 (1998), pp.2245.
[23] Robert E. Reed-Hill, Reza Abbaschian, “PHYSICAL METAL- LURGY PRINCIPLES”, THIRD EDITION (1973), pp.227-271.
[24] T. Mukai, H. Watanabe and K. Higashi, Materials Science Forum, Vol. 350-351 (2000), pp. 159-170.
[25] P. Gordon , Trans. AIME, 203 1043 (1955).
[26] J. C. Li, ,Appl., J. Phys., 33 2958 (1962).
[27] R. M. Treco, AIME Regional Conference on Reactive Metals, (1956), pp. 136.
[28] J. S. Smart, and A. A. Smith, Trans. AIME, 152 103 (1943).
[29] W. A. Anderson, and R. F. Mehl, Trans. AIME, 161 140 (1945).
[30] 黃庭彬, “鎂合金與不銹鋼鈑材溫間成形特性之研究”, 國立台灣大學機械工程學研究所博士論文 (2003).
[31] A. K. Ghosh, C. H Hamilton, “Superplastic Forming and Diffusion Bonding”, Feb.(1990), pp.13-15.
[32] W-J. KIM, S. W. CHUNG, C. S. CHUNG and D. KUM, Acta Materialia, Vol.49 (2001), p3337-3345.
[33] T. C. Chang, J. Y. Wang, C. M. O and S. Lee, Materials Processing Technology, Vol.140 (2003), pp.588-591.
[34] N. Aoyagi, S. Kamado, Y. kojima, Materials Science Forum, Vol.419-422 (2003), pp.129-134.
[35] 洪國程, “超塑性5083鋁合金快速成形空孔與厚度分析”, 國立中央大學機械工程研究所 (2002).
[36] 陳超明, “鎂合金的高速超塑性成形技術”,工業材料168期(8912), pp.102-104.
[37] 范光堯, “機械成形技術於鎂合金材料的應用概況”, 工業材料162期(8906), pp.139-144.
[38] 陳立文, “等通道彎角擠製之有限元素分析”, 國立中央大學機械工程研究所 (2002), pp.46.
[39] S. Y. Chang, K. S. Lee, S. H. Lee, S. K. Hong, K. T. Park, D. H. Shin, Materials Science Forum, Vol.419-422 (2003), pp.491-496.
[40] M. Hilpert, A. Styczynski, J. Kiese, L. Wanger, Magnesium Alloys and their Application, p.319-324.
[41] T. Mukai, M. Yamanoi, H. Watanabe, and K. Higashi, Scripta Materialia, Vol. 45 (2001), pp.89-94.
[42] A. Mwembela, E. B. Konopleva, H. J. McQueen, Scripta Materialia, Vol. 37 (1997), pp.1789-1795.
[43] V. M. Segal, Materials Science and Engineering, A197 (1995), pp.157-164.
[44] U. Chakkingal, A. B. Suriadi and P. F. Thomson, Scripta Materialia, Vol.39, No.6 (1998), pp.677-684.
[45] W. J. Kim and H. G. Jeong, Materials Science Forum, Vol. 419-422 (2003), pp.201-206.
[46] J. A. Chapman, D. V. Wilson, J. Inst. Metals, 91 (1962-63), 35.
[47] 王建義, 歐家銘, “鎂合金軋延材之材料特性”,台北國際鎂合金研討會 (2001), pp.121-130.
[48] Y. Lu, Q. Wang, X. Zeng, W. Ding, C. Zhai and Y. Zhu, Materials Science Engineering, A278 (2000), pp.69-77.
[49] J. C. Tan, M. J. Tan, Materials Science Engineering, A339(2003), pp.81-89.
[50] E. C. Burke, and W. R. Hibbard, Trans. AIME, 194, 295 (1952).