| 研究生: |
林修華 Hsiu-Hua Lin |
|---|---|
| 論文名稱: |
具四階脈波振幅調變資料相位偵測器與還原資料選擇電路之10 Gb/s時脈與資料回復電路 A 10 Gb/s Clock and Data Recovery with PAM-4 Data Phase Detection and Recovered Data Selection |
| 指導教授: |
鄭國興
Kuo-Hsing Cheng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 時脈與資料回復電路 、四階脈波振幅調變 、相位偵測器 、抖動容忍度 |
| 外文關鍵詞: | Clock and data recovery, PAM-4, Phase detector, Jitter tolerance |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著串列傳輸系統對資料速率的需求逐漸提升,頻寬的需求也日漸嚴苛。四階脈波振幅調變技術可以應用於串列傳輸系統,其頻寬需求僅為非歸零式訊號的一半,因此系統可以操作在較低的頻率。然而,四階脈波振幅調變資料的多個電壓準位與複雜的資料轉態情形,將會提高時脈與資料回復電路的設計難度,因此,目前文獻設計上採用多組相位偵測器或是資料轉態選擇器,以達成較高的資料轉態密度或是較小的回復時脈抖動量。
評估四階脈波振幅調變資料的特性對時脈與資料回復電路效能之影響,本論文提出一個應用於四階脈波振幅調變資料的二進位相位偵測器和還原資料選擇電路。所提出之四階脈波振幅調變資料相位偵測器,可用於偵測四階脈波振幅調變資料的各種邊緣型態,因此可增加資料轉態密度,進而獲得較佳的相位追鎖能力。論文中之設計亦使用還原資料選擇電路,以提升時脈與資料回復電路之抖動容忍度,並能降低誤碼率。避免因四階脈波振幅調變資料的急劇資料邊緣變化和多個電壓準位,造成高頻抖動容忍量下降。本論文之電路設計採用TSMC 40 nm (TN40G) 1P10M CMOS製程,操作電壓為0.9V,晶片面積為1.10 mm2,核心電路面積為0.11 mm2。輸入資料為10 Gb/s PRBS7 PAM-4時,佈局後模擬之還原時脈速率為5 GHz,還原時脈之峰對峰值20.8 pspp,方均根值3.21 psrms,功率消耗為41.6 mW。
The demand of higher data rate in serial transmission is rising, and the bandwidth requirement is more critical. 4-level pulse amplitude modulation (PAM-4) technique can be adopted to decrease bandwidth requirement to half compared to NRZ data, so the clock in the receiver also can operate at lower frequency. However, the multiple levels and complicated transitions of PAM-4 data increase the design difficulty of clock and data recovery. Therefore, current papers use multiple phase detectors or data transition selector to achieve higher transition density or less recovered clock jitter.
Considering the impact of characteristics of PAM-4 data on the performance of clock and data recovery. This thesis presents a bang-bang clock and data recovery with PAM-4 data phase detector and recovered data selection. The proposed PAM-4 bang-bang phase detector can be used on detecting all edge types of PAM-4 data. Therefore, the transition density can be increased, and then better phase tracking ability is acquired. This thesis also presents a recovered data selection circuit to enhance jitter tolerance of clock and data recovery, and is able to lower bit error rate. The circuit of this thesis is designed in 40 nm standard CMOS process with supply voltage of 0.9 V, the chip area is 1.10 mm2, the core area is 0.11 mm2. The post-layout simulation jitter of the recovered clock is 20.8 pspp and 3.21 psrm, and the total power consumption is 41.6 mW at 10 Gb/s PAM-4 27 – 1 pseudo random binary sequence (PRBS7) signal.
[1] Universal Serial Bus Specification, Revision 3.1, USB-IO, 2013.
[2] Serial ATA International Organization, Serial ATA Revision 3.0, SATA-IO, 2009.
[3] PCI Express® Base Specification, Revision 2.1, PCI-SIG, 2010.
[4] Behzad Razavi, Design of Integrated Circuits for Optical Communications. McGraw-Hill: Behzad Razavi, 2003.
[5] 吳彥學, “應用於PCI Express Generation II之5-Gb/s無電感式類比等化器的設計與實現,” 碩士論文, 國立中央大學, 2009.
[6] 孫世洋, “以符碼間干擾技術實現自適應等化器之5 Gbps半速率時脈與資料回復電路,” 碩士論文, 國立中央大學, 2016.
[7] 鄭柏旻, “具電容放大技術和自適應迴路增益控制器之5 Gbps雙路徑時脈與資料回復電路,” 碩士論文, 國立中央大學, 2017.
[8] 鄭宇亨, “具資料獨立相位追蹤補償技術之10 Gbps半速率時脈與資料回復電路,” 碩士論文, 國立中央大學, 2018.
[9] J. Lee, P. C. Chiang, P. J. Peng, L. Y. Chen, and C. C. Weng, “Design of 56 Gb/s NRZ and PAM4 SerDes transceivers in CMOS technologies,” IEEE J. Solid-State Circuits, vol. 50, no. 9, pp. 2061–2073, Sep. 2015.
[10] 劉深淵, 楊清淵, 鎖相迴路, 滄海書局, 2006.
[11] W.-Y. Lee, K.-D. Hwang, and L.-S. Kim, “A 5.4/2.7/1.62-Gb/s receiver for DisplayPort version 1.2 with multi-rate operation scheme,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 59, no. 12, pp. 2858–2866, Nov. 2012.
[12] D. Dalton, K. Chai, E. Evans, M. Ferriss, D. Hitchcox, P. Murray, S. Selvanayagam, P. Shepherd, and L. DeVito, “12.5-Mb/s to 2.7-Gb/s continuous-rate CDR with automatic frequency acquisition and data-rate readback,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2713–2725, Dec. 2005.
[13] X. Maillard, F. Devisch, and M. Kuijk, “A 900-Mb/s CMOS data recovery DLL using half-frequency clock,” IEEE J. Solid-State Circuits, vol. 37, no. 6, pp.711–715, Jun. 2002.
[14] J. Kim, and D.-K. Jeong, “Multi-gigabit-rate clock and data recovery based on blind oversampling,” IEEE Commun. Mag., vol. 41, pp. 68–74, Dec. 2003.
[15] Ruiyuan, and G. S. La Rue, “Fast acquisition clock and data recovery circuit with low jitter,” IEEE J. Solid-State Circuits, vol. 41, no. 5, pp.1016–1024, May. 2006.
[16] J. L. Zerbe, C. W. Werner, V. Stojanovic, F. Chen, J. Wei, G. Tsang, D. Kim, W. F. Stonecypher, A. Ho, T. P. Trush, R. T. Kollipara, M. A. Horowitz, and K. S. Donnelly, “Equalization and clock recovery for a 2.5-10 Gb/s 2-PAM/4-PAM backplane transceiver cell,” IEEE J. Solid-State Circuits, vol. 38, no. 12, pp. 2121–2130, Dec. 2003.
[17] T. Toifl, C. Menolfi, M. Ruegg, R. Reutemann, P. Buchmann, M. Kossel, T. Morf, J. Weiss, and M. L. Schmatz, “A 22-Gb/s PAM-4 receiver in 90-nm CMOS SOI technology,” IEEE J. Solid-State Circuits, vol. 41, no. 4, pp. 954–965, Apr. 2006.
[18] N. Qi, Y. Kang, Q. Lin, J. Ma, J. Shi, B. Yin, C. Liu, R. Bai, S. Hu, J. Wang, J. Du, L. Ma, Z. He, M. Liu, F. Zhang, and P. Y. Chiang, “A 51Gb/s, 320mW, PAM4 CDR with baud-rate sampling for high-speed optical interconnects,” in Proc. IEEE Asian Solid-State Circuit Conf., pp. 89–92, Nov. 2017.
[19] D. H. Kwon, M. Kim, S. G. Kim, and W. Y. Choi, “A 32-Gb/s PAM-4 quarter-rate clock and data recovery circuit with an input slew-rate tolerant selective transition detector,” IEEE Trans. Circuits Syst. II, Express Briefs, vol. 66, no. 3, pp. 362–366, Mar. 2019.
[20] A. R. Zamir, T. Iwai, Y. H. Fan, A. Kumar, H. W. Yang, L. Sledjeski, J. Hamiltion, S. Chandramouli, A. Aude, and S. Palermo, “A 56-Gb/s PAM4 receiver with low-overhead techniques for threshold and edge-based DFE FIR-and IIR-tap adaption in 65-nm CMOS” IEEE J. Solid-State Circuits, vol. 54, no. 3, pp. 672–684, Mar. 2019.
[21] L. Tang, W. Gai, L. Shi, and X. Xiang, “A 40 Gb/s 74.9 mW PAM4 receiver with novel clock and data recovery,” in Proc. IEEE Int. Symp. On Circuits and Syst., 2017.
[22] J. Lee, K. S. Kundert, and B. Razavi, “Analysis and modeling of bang-bang clock and data recovery circuits,” IEEE J. Solid-State Circuits, vol. 39, no. 9, pp. 1571–1580, Sep. 2004.
[23] B. Wicht, T. Nirschl and D. Schmitt-Landsiedel, “Yield and speed optimization of a latch-type voltage sense amplifier,” IEEE J. Solid-State Circuits, vol. 39, no. 7, pp. 1148–1158, Jul 2004.
[24] B. Nikolic, V. G. Oklobdˇzija, V. Stojanovic, W. Jia, J. K. S. Chiu, and M. M. T. Leung, “Improved sense-amplifier-based flip-flop: design and measurements,” IEEE J. Solid-State Circuits, vol. 35, no. 6, pp. 876–884, Jun 2000.