跳到主要內容

簡易檢索 / 詳目顯示

研究生: 吳諭昕
Yu-hsin Wu
論文名稱: Calibrating the state price densities using TAIEX options
指導教授: 鄧惠文
Huei-wen Teng
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 統計研究所
Graduate Institute of Statistics
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 66
中文關鍵詞: 狀態價格密度台指選擇權Derman Kani樹狀結構貝氏正交方法
外文關鍵詞: State-Price Density, Derman Kani method, Bayesia
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 狀態價格密度(State price densities, SPD)為一建構於風險中立測度之下用於選擇權定價之機率密度函數。實務上,狀態價格密度經常應用於定價以及風險管理。本文將以Black-Scholes模型為基礎與CRR樹狀結構方式、Derman Kani樹狀結構方式及Teng與Liechty之貝氏估計方式,以2008年及2012年台灣加權指數選擇權去測定狀態價格密度。

    實證分析顯示,因CRR樹狀結構為Black-Scholes模型之離散化模型,故其二者結果相似。此外,為了建構Derman Kani樹狀結構,我們以內插法建構隱含波動率曲面,用以求算Derman Kani樹狀結構每一節點所需之買權價值。在2008年與2012年之實證分析,除Derman Kani樹狀結構易受市場變動而影響,其餘三者並未因2008年之市場劇烈變動而影響其訂價能力。整體而言,無論合約期間長短為何, Teng與Liechty方法最為穩健,並且對於長天期選擇權契約的配適較其他方法為優。


    State price densities are the probability densities to price financial options under the risk-neutral measures, and are particularly important for pricing and risk management. In this thesis, we compare four different methods to calibrate the state price densities using Taiwan stock index options data for years 2008 and 2012. The celebrated Black-Scholes model serves as our benchmark model. In addition, we consider its discretized version, the Cox, Ross and Rubinstein model (1979). However, to avoid model misspecification, we further study method proposed by the Derman and Kani (1994) which relaxes the assumptions on constant volatility, and a Bayesian nonparametric approach by Teng and Liechty (2009).

    Our empirical results indicate that Cox, Ross and Rubinstein tree performs quite similar as the benchmark model because it is a discretized version of the Black-Scholes model. However, their pricing ability are not worse when the market changes dramatically, for example, during the 2008 financial crisis. Only Derman and Kani method perform worse during the period. Here, we use a standard interpolation to smooth the implied volatility. Derman and Kani tree does not produce good model fit, and appears to be unstable when the market changes significantly. Teng and Liechty method appears to be robust for options with all maturities. It outperforms all the other methods for options with longer time to maturities. The same conclusion holds for both 2008 and 2012.

    Contents 摘要 i Abstract ii 致謝 iv List of Figures vii List of Tables x 1 Introduction 1 2 Literature review 3 2.1 Black-Scholes model 5 2.2 Cox, Ross and Rubinstein tree 5 2.3 Derman and Kani tree 7 2.4 Bayesian Quadrature method 12 3 Simulation studies 17 3.1 Black-Scholes model 17 3.2 Derman and Kani tree 18 4 Empirical analysis 26 4.1 The data 26 4.2 Model Comparisons 32 4.3 Estimate with the fixed time to maturity 43 5 Conclusion 50 6 Discussion 51 Reference 52

    Ait-Sahalia, Y. and A. W. Lo (1998). Nonparametric estimation of state-price
    densities implicit in nancial asset prices. Journal of Finance.
    At-Sahalia, Y. and A. W. Lo (1998). Nonparametric estimation of state-price
    densities implicit in nancial asset prices. Journal of Finance 53, 499{547.
    Ait-Sahalia, Y. and A. W. Lo (2000). Nonparametric risk management and
    implied risk aversion. Journal of Econometrics.
    Barle, S. and N. Cakici (1998). How to grow a smiling tree. The Journal of
    Financial Engineering 7.
    Black, F. and M. Scholes (1973). The pricing of options and corporate liabilities.
    Journal of Political Economy.
    Boyle, P. P. (1977). Options: A Monte Carlo approach. Journal of Financial
    Economics 4, 323-338.
    Breeden, D. T. and R. H. Litzenberger (1978). Prices of state-contingent
    claims implicit in option prices. The Journal of Business.
    Cox, J. C., S. A. Ross, and M. Rubinstein (1979). Option pricing: A simpli ed
    approach. Journal of Financial Economics 7 (3), 229{263.
    Derman, E. (1994). The volatility smile and its implied tree. RISK.
    Dupire, B. (1994). Pricing with a smile. RISK.
    Fan, J. and L. Mancini (2009). Option pricing with model-guided nonparametric
    methods. Journal of the American Statistical Association.
    Hardle, W. and Z. Hlavka (2009). Dynamics of state price densities. Journal
    of Econometrics.
    Hardle, W. and A. Yatchew (2000). Dynamic nonparametric state price density
    estimation using constrained least squares and the bootstrap. Sonderforschungsbereich 373, Humboldt Universitaet Berlin.
    Merton, R. C. (1973). The relationship between put and call option prices.
    Journal of Finance.
    Rubinstein, M. (1994). Implied binomial trees. Journal of Finance 49, 771-818.
    Schwartz, E. S. (1977). The valuation of warrants: Implementing a new
    approach. Journal of Financial Economics 4 (1), 79{93.
    Teng, H.-W. and J. Liechty (2009). Bayesian quadrature approaches to state-price density estimation. Working paper.

    QR CODE
    :::