跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張雲婷
Yun-timg Chang
論文名稱: 利用可穿越細胞膜的MyoD重組蛋白將體細胞重新編寫成肌肉前驅細胞以治療杜顯氏肌肉萎縮症
Using cell-penetrating recombinant MyoD protein to reprogram somatic cells into myogenic progenitor cells for treating Duchenne Muscular Dystrophy
指導教授: 陳盛良
Shen-liang Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 生醫理工學院 - 生命科學系
Department of Life Science
論文出版年: 2013
畢業學年度: 102
語文別: 中文
論文頁數: 82
中文關鍵詞: 可穿越細胞膜的MyoD重組蛋白杜顯氏肌肉萎縮症肌肉前驅細胞
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 針對杜顯氏肌肉萎縮症Duchenne muscular dystrophy (DMD)疾病延伸出許多治療方式,由於dystrophy基因突變缺陷導致肌肉細胞不能正常產生的Dystrophin蛋白質,Dystrophin缺陷會造成心肌和骨骼肌不穩定,並且大量消耗satellite cell pool,最終導致死亡(Wallace and McNally, 2009b),從利用病毒(virus)感染細胞有外來的基因序列嵌入到基因體的疑慮到帶有穿膜序列的蛋白質,一直以來成功的效率和安全性問題備受關注;於是我們利用安全性疑慮較低的蛋白質,將肌肉重要決定因子MyoD基因建構並純化出MyoD protein讓其帶有穿膜序列稱為PTD,為了增加成功比率,會搭配Streptolysin O (SLO)技術產生可回復的短暫通透性來誘導出myogenic progenitor cells;利用reporter assay確認所純化的protein具有功能性後,在本實驗中成功將fibroblast轉變成myoblast,成功誘導MyoD mRNA的表現,但搭配SLO似乎對於MyoD protein進入到cell比例沒明顯幫助,此外從mdx mice所取下的tail tip fibroblast一樣能將primary cell誘導走向myogenic lineage,可惜的是停止加MyoD protein會讓cell的myogenic marker下降;為了讓trans-differentiated走向myogenic cell具有增生能力,結合 vitamin C、VPA、bFGF在不同情況下,利用RT-PCR方式檢測myogenic和satellite cell 的marker,意外中發現將myogenic cell養在有collagen I coating plate中,對於keep myogenic cell是有幫助的,進一步確認所誘導的myogenic cell具有分化成myotube能力,將所誘導的myogenic cell和C2C12 co-cultured 成功分化成myotube;未來可以加入CRP-Pax3、CRP-Pax7、CRP-Oct4、CRP-Sox2幫助誘導的myogenic cell更能維持在未分化狀態和具有增生能力。


    Duchenne muscular dystrophy (DMD), one of the most prevalent pediatric genetic disorders , is caused by point mutations or deletions in the gene Dystrophin (Dys). Currently, there is no cure for this disease and patients generally pass away at their 2nd to 3rd decade of life due to serious dystrophy of cardiac or diaphragm muscle. We used cell-penetrating peptide-fused MyoD (CRP-MyoD) proteins to reprogram fibroblasts into myoblasts. Current results show that CRP-MyoD is functional and can activate reporters driven by targeted gene promoters. Furthermore, trans-differentiated myotubes are observed and endogeneous MyoD mRNA expression is induced by CRP-MyoD, suggesting the success of this inducing system, Unfortunately, treatment with streptolysin-O (SLO) failed to promote penetration of CRP-MyoD into cells, and MyoD mRNA expression declined over time after reprogrammed cells were cultured in medium without CRP-MyoD. We are combining CRP-MyoD, recombinant basic fibroblast growth factor, and small compounds, such as valproic acid, vitamin C to determine the optimal condition for reprograming fibroblasts into myogenic progenitor cells. In our experiment, myogenic cells cultured on collagen-coated plate maintain myogenic lineage better than those on non-coated plate. Further, induced myogenic cell has the ability to differentiate into myotube;The co-cultured myogenic cell and C2C12 cell successfully differentiated into myotube.In the future, CRP-Pax3, CRP-Pax7 ,CRP-Oct4 and CRP-Sox2 will be included in the induction system to generate satellite cell-like myogenic stem cells for long-term stem cell source.

    中文摘要 i Abstract ii 目錄 iii 一、緒論 1 I. 肌肉的起源 1 II. MRFs (Muscle Regulatory Factors)家族及MRFs家族對肌肉發展重要性 2 III. MyoD對於肌肉發育的重要性 3 IV.纖維母細胞生長因子(basic fibroblast growth factor, bFGF) 3 V. 肌肉衛星細胞(Satellite cell) 4 VI. Duchenne muscular dystrophy (DMD) 5 VII. PTD (protein transduction domains)或CPPs(cell penetrating peptides) 7 VIII. 細胞膜的短暫通透性 (transient permeabilization and protein treatment) 7 IX. 研究動機與目的 8 二、實驗材料與方法 9 2-1. 細胞株 9 穩定表現細胞株: 9 2-2質體構築 (Cloning) 與轉型作用 (Transformation) 10 2-2-1 質體構築 10 2-2-2 菌株 11 2-2-3 聚合酶鏈鎖反應 (Polymerase Chain Reaction ,PCR) 11 2-2-4 插入 (Insert) DNA的純化 12 2-2-5 載體 DNA的 5’端去磷酸根反應(Calf Intestinal Alkaline Phosphatase, NEB C.I.P)與純化 12 2-2-6 Klenow (DNA polymerase I, Large Fragment, NEB) 12 2-2-7接合反應 (Ligation) 13 2-2-8 大腸桿菌的轉型作用 (Transformation) 13 2-3 RT-PCR 13 2-3-1 Total RNA 製備: 13 2-3-2 反轉錄酶反應 (Reverse Transcriptase, RT) 14 2-4 Real Time PCR 定量實驗 15 2-5 轉染實驗 16 2-5-1 轉染作用 (Transfection) 16 2-5-2 螢火蟲冷光活性方法 (Luciferase Activity Assay) 16 2-5-3 免疫染色 (Immunohistochemistry) 16 2-6 蛋白質純化 17 2-6-1 轉型作用 17 2-6-2 蛋白質表現及純化 17 2-7西方墨點實驗 (Western blot) 20 2-7-1 Total Protein Lysate 的製備 20 2-7-2 SDS-polyacrylamide Gel Electropheresis 20 2-7-3 Blocking 以及 Antibody 辨識 20 2-10-4 蛋白質脫附 (Striping) 21 2-8 細胞膜的短暫通透性 21 2-9 人工染色體純化 22 2-10 Chicken embryo extract 製備 23 三、實驗結果 24 3-1架構與純化帶有蛋白質穿透序列 (cell penetrating peptides, CPPs) 的MyoD重組蛋白 24 3-2-1 Recombination MyoD protein 在C3H10T1/2 cells 中活化MyoD 6.0-promoter-enhancer driven Luciferase reporter 24 3-2-2 Recombination MyoD protein 在C3H10T1/2中活化Myogenin promoter driven Luciferase reporter 25 3-2-3 Recombination MyoD protein 在C2C12中活化Myogenin promoter driven Luciferase reporter 25 3-3 架構與純化纖維母細胞生長因子(basic fibroblast growth factor, bFGF) 26 3-4 確認所純化的bFGF recombination protein是否具有功能 26 3-5 利用SLO作用使C3H10T1/2細胞膜產生短暫通透性 27 3-6 將所純化的cell-penetrating recombinant MyoD (CRP-MyoD) protein 27 3-7 將所純化的cell-penetrating recombinant MyoD (CRP-MyoD) protein直接加入pStable 10T PME Luc+細胞中,並且combined Vitamin C、VPA、bFGF增加reprograming 效率 28 3-8 將10T fibroblast trans-differentiate into myogenic cell進行分化 29 3-9 C3H10T1/2 PyCAGIP eGFP和C2C12 PyCAGIP co-cultured 方式觀察C3H10T1/2 PyCAGIP eGFP處理MyoD protein 後的cell是否具有differentiation成myotube的能力 30 四、 實驗討論 31 4-1 重組蛋白的純化條件 31 4-2 SLO在C3H10T1/2 fibroblasts產生通透性 31 4-3 cell-penetrating MyoD protein結合cytokine 、compounds增加 32 4-4 將10T fibroblast trans-differentiate into myogenic cell進一步誘導分化 33 4-5 以co-cultured方式觀察C3H10T1/2 PyCAGIP eGFP處理MyoD protein 後cell是否具有differentiation 成myotube的能力 33 五、參考文獻 35 六、圖表 41 圖一、cell-penetrating recombinant MyoD (CRP-MyoD) protein純化過程 43 圖二、利用在C3H10T1/2 cells 中活化MyoD 6.0-promoter-enhancer driven Luciferase reporter測試所純化CRP-MyoD protein是否具有正常function 44 圖三、利用在C3H10T1/2 cells 中活化Myogenin promoter driven Luciferase reporter測試所純化CRP-MyoD protein是否具有正常function 45 圖四、利用C2C12中活化Myogenin promoter driven Luciferase reporter 測試所純化CRP-MyoD protein是否具有正常function 46 圖五、建構並純化pGEX-4T-bFGF 47 圖六、利用在C3H10T1/2 cells 中活化Nanog promoter-4828~+190 driven Luciferase reporter測試所純化bFGF protein是否具有正常function 48 圖七、trypan blue uptake測試細胞通透性 49 圖八、將純化後的CRP-MyoD protein加入具有通透性的穩定細胞株 51 圖九、觀察處理過SLO細胞株型態的改變 52 圖十、利用RT-PCR的方式,檢測有關myogenesis /satellite cell mRNA表現量變化 53 圖十一、利用pStable 10T PME Luc+ 細胞株檢測哪個組合可以activate promoter的活性較高 54 圖十二、利用RT-PCR的方式探討CRP-MyoD protein combined cytokine、compounds對於有關myogenesis /satellite cell mRNA表現量變化和分化情形及其MyoD mRNA表現量和C2C12 myoblast cell之間的差異 56 圖十三、利用RT-PCR的方式探討Mdx tail tip fibroblast 處理CRP-MyoD protein對於有關myogenesis /satellite cell mRNA表現量變化 57 圖十四、利用RT-PCR的方式探討在沒有MyoD protein存在下myogenic cell可持續表現MyoD多久和MyoD protein花多少時間進入cell中以及collagen coating plate有無幫助myoblast cell 的貼附能力 59 圖十五、 C3H10T1/2 PyCAGIP eGFP和C2C12 PyCAGIP co-cultured 方式觀察C3H10T1/2 PyCAGIP eGFP處理MyoD protein 後的cell是否具有differentiation成myotube能力 61 附錄一 62 質體構築 62 附錄二 63 Primer 對照表 63 附錄三 65 溶液及試劑配方 65 縮寫與全名對照表-藥品及材料 68

    Beauchamp, J.R., Heslop, L., Yu, D.S., Tajbakhsh, S., Kelly, R.G., Wernig, A., Buckingham, M.E., Partridge, T.A., and Zammit, P.S. (2000). Expression of CD34 and Myf5 defines the majority of quiescent adult skeletal muscle satellite cells. The Journal of cell biology 151, 1221-1234.
    Bhakdi, S., Bayley, H., Valeva, A., Walev, I., Walker, B., Kehoe, M., and Palmer, M. (1996). Staphylococcal alpha-toxin, streptolysin-O, and Escherichia coli hemolysin: prototypes of pore-forming bacterial cytolysins. Archives of microbiology 165, 73-79.
    Bhakdi, S., Tranum-Jensen, J., and Sziegoleit, A. (1985). Mechanism of membrane damage by streptolysin-O. Infection and immunity 47, 52-60.
    Borello, U., Coletta, M., Tajbakhsh, S., Leyns, L., De Robertis, E.M., Buckingham, M., and Cossu, G. (1999). Transplacental delivery of the Wnt antagonist Frzb1 inhibits development of caudal paraxial mesoderm and skeletal myogenesis in mouse embryos. Development 126, 4247-4255.
    Carnac, G., Primig, M., Kitzmann, M., Chafey, P., Tuil, D., Lamb, N., and Fernandez, A. (1998). RhoA GTPase and serum response factor control selectively the expression of MyoD without affecting Myf5 in mouse myoblasts. Molecular biology of the cell 9, 1891-1902.
    Charge, S.B., and Rudnicki, M.A. (2004). Cellular and molecular regulation of muscle regeneration. Physiological reviews 84, 209-238.
    Cleland, J.L., Hedgepeth, C., and Wang, D.I. (1992). Polyethylene glycol enhanced refolding of bovine carbonic anhydrase B. Reaction stoichiometry and refolding model. The Journal of biological chemistry 267, 13327-13334.
    Cossu, G., Tajbakhsh, S., and Buckingham, M. (1996). How is myogenesis initiated in the embryo? Trends in Genetics 12, 218-223.
    Davies, K.E., and Nowak, K.J. (2006). Molecular mechanisms of muscular dystrophies: old and new players. Nature reviews Molecular cell biology 7, 762-773.
    de la Serna, I.L., Carlson, K.A., and Imbalzano, A.N. (2001). Mammalian SWI/SNF complexes promote MyoD-mediated muscle differentiation. Nature genetics 27, 187-190.
    Edmondson, D.G., and Olson, E.N. (1993). Helix-loop-helix proteins as regulators of muscle-specific transcription. The Journal of biological chemistry 268, 755-758.
    Esteban, M.A., Wang, T., Qin, B., Yang, J., Qin, D., Cai, J., Li, W., Weng, Z., Chen, J., Ni, S., et al. (2010a). Vitamin C enhances the generation of mouse and human induced pluripotent stem cells. Cell Stem Cell 6, 71-79.
    Esteban, M.A., Wang, T., Qin, B., Yang, J., Qin, D., Cai, J., Li, W., Weng, Z., Chen, J., Ni, S., et al. (2010b). Vitamin C Enhances the Generation of Mouse and Human Induced Pluripotent Stem Cells. Cell Stem Cell 6, 71-79.
    Ezzat, S., and Asa, S.L. (2005). FGF receptor signaling at the crossroads of endocrine homeostasis and tumorigenesis. Horm Metab Res 37, 355-360.
    Fallon, J.F., Lopez, A., Ros, M.A., Savage, M.P., Olwin, B.B., and Simandl, B.K. (1994). FGF-2: apical ectodermal ridge growth signal for chick limb development. Science (New York, NY) 264, 104-107.
    Gottlicher, M., Minucci, S., Zhu, P., Kramer, O.H., Schimpf, A., Giavara, S., Sleeman, J.P., Lo Coco, F., Nervi, C., Pelicci, P.G., et al. (2001). Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. The EMBO journal 20, 6969-6978.
    Hirai, H., Tani, T., and Kikyo, N. (2010). Structure and functions of powerful transactivators: VP16, MyoD and FoxA. The International journal of developmental biology 54, 1589-1596.
    Horsley, V., Jansen, K.M., Mills, S.T., and Pavlath, G.K. (2003). IL-4 acts as a myoblast recruitment factor during mammalian muscle growth. Cell 113, 483-494.
    Hoshiya, H., Kazuki, Y., Abe, S., Takiguchi, M., Kajitani, N., Watanabe, Y., Yoshino, T., Shirayoshi, Y., Higaki, K., Messina, G., et al. (2009). A highly stable and nonintegrated human artificial chromosome (HAC) containing the 2.4 Mb entire human dystrophin gene. Molecular therapy : the journal of the American Society of Gene Therapy 17, 309-317.
    Huangfu, D., Osafune, K., Maehr, R., Guo, W., Eijkelenboom, A., Chen, S., Muhlestein, W., and Melton, D.A. (2008). Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nature biotechnology 26, 1269-1275.
    Hugo, F., Reichwein, J., Arvand, M., Kramer, S., and Bhakdi, S. (1986). Use of a monoclonal antibody to determine the mode of transmembrane pore formation by streptolysin O. Infection and immunity 54, 641-645.
    Koenig, M., Hoffman, E.P., Bertelson, C.J., Monaco, A.P., Feener, C., and Kunkel, L.M. (1987). Complete cloning of the duchenne muscular dystrophy (DMD) cDNA and preliminary genomic organization of the DMD gene in normal and affected individuals. Cell 50, 509-517.
    Koenig, M., Monaco, A.P., and Kunkel, L.M. (1988). The complete sequence of dystrophin predicts a rod-shaped cytoskeletal protein. Cell 53, 219-228.
    Lanner, F., and Rossant, J. (2010). The role of FGF/Erk signaling in pluripotent cells. Development (Cambridge, England) 137, 3351-3360.
    Lee, J.C., and Timasheff, S.N. (1981). The stabilization of proteins by sucrose. The Journal of biological chemistry 256, 7193-7201.
    Lee, T.J., Jang, J., Kang, S., Jin, M., Shin, H., Kim, D.W., and Kim, B.S. (2013). Enhancement of osteogenic and chondrogenic differentiation of human embryonic stem cells by mesodermal lineage induction with BMP-4 and FGF2 treatment. Biochemical and biophysical research communications 430, 793-797.
    Mauro, A. (1961). Satellite cell of skeletal muscle fibers. The Journal of biophysical and biochemical cytology 9, 493-495.
    Millay, D.P., O'Rourke, J.R., Sutherland, L.B., Bezprozvannaya, S., Shelton, J.M., Bassel-Duby, R., and Olson, E.N. (2013). Myomaker is a membrane activator of myoblast fusion and muscle formation. Nature 499, 301-305.
    Nishikawa, S., Goldstein, R.A., and Nierras, C.R. (2008). The promise of human induced pluripotent stem cells for research and therapy. Nature reviews Molecular cell biology 9, 725-729.
    Odom, G.L., Gregorevic, P., and Chamberlain, J.S. (2007). Viral-mediated gene therapy for the muscular dystrophies: successes, limitations and recent advances. Biochimica et biophysica acta 1772, 243-262.
    Olson, E.N. (1990). MyoD family: a paradigm for development? Genes & Development 4, 1454-1461.
    Ordahl, C.P., and Williams, B.A. (1998). Knowing chops from chuck: roasting myoD redundancy. BioEssays : news and reviews in molecular, cellular and developmental biology 20, 357-362.
    Pan, T., Li, X., Xie, W., Jankovic, J., and Le, W. (2005). Valproic acid-mediated Hsp70 induction and anti-apoptotic neuroprotection in SH-SY5Y cells. FEBS letters 579, 6716-6720.
    Parker, M.H., Seale, P., and Rudnicki, M.A. (2003). Looking back to the embryo: defining transcriptional networks in adult myogenesis. Nat Rev Genet 4, 497-507.
    Piette, J., Bessereau, J.-L., Huchet, M., and Changeux, J.-P. (1990). Two adjacent MyoD1-binding sites regulate expression of the acetylcholine receptor [alpha]-subunit gene. Nature 345, 353-355.
    Pourquie, O., Fan, C.M., Coltey, M., Hirsinger, E., Watanabe, Y., Breant, C., Francis-West, P., Brickell, P., Tessier-Lavigne, M., and Le Douarin, N.M. (1996). Lateral and axial signals involved in avian somite patterning: a role for BMP4. Cell 84, 461-471.
    Riley, B.B., Savage, M.P., Simandl, B.K., Olwin, B.B., and Fallon, J.F. (1993). Retroviral expression of FGF-2 (bFGF) affects patterning in chick limb bud. Development 118, 95-104.
    Rodrigues, M., Griffith, L.G., and Wells, A. (2010). Growth factor regulation of proliferation and survival of multipotential stromal cells. Stem cell research & therapy 1, 32.
    Rudnicki, M.A., and Jaenisch, R. (1995). The MyoD family of transcription factors and skeletal myogenesis. BioEssays : news and reviews in molecular, cellular and developmental biology 17, 203-209.
    Sartorelli, V., Huang, J., Hamamori, Y., and Kedes, L. (1997). Molecular mechanisms of myogenic coactivation by p300: direct interaction with the activation domain of MyoD and with the MADS box of MEF2C. Molecular and cellular biology 17, 1010-1026.
    Schwartz, S.M., and Liaw, L. (1993). Growth control and morphogenesis in the development and pathology of arteries. Journal of cardiovascular pharmacology 21 Suppl 1, S31-49.
    Sekiya, K., Danbara, H., and Futaesaku, Y. (1993). [Mechanism of pore formation on erythrocyte membrane by streptolysin-O]. Kansenshogaku zasshi The Journal of the Japanese Association for Infectious Diseases 67, 736-740.
    Thayer, M.J., Tapscott, S.J., Davis, R.L., Wright, W.E., Lassar, A.B., and Weintraub, H. (1989). Positive autoregulation of the myogenic determination gene MyoD1. Cell 58, 241-248.
    Tsumoto, K., Umetsu, M., Kumagai, I., Ejima, D., Philo, J.S., and Arakawa, T. (2004). Role of arginine in protein refolding, solubilization, and purification. Biotechnology progress 20, 1301-1308.
    Tyagi, M., Rusnati, M., Presta, M., and Giacca, M. (2001). Internalization of HIV-1 Tat Requires Cell Surface Heparan Sulfate Proteoglycans. Journal of Biological Chemistry 276, 3254-3261.
    Vainikka, S., Partanen, J., Bellosta, P., Coulier, F., Birnbaum, D., Basilico, C., Jaye, M., and Alitalo, K. (1992). Fibroblast growth factor receptor-4 shows novel features in genomic structure, ligand binding and signal transduction. The EMBO journal 11, 4273-4280.
    Wadia, J.S., and Dowdy, S.F. (2002). Protein transduction technology. Current Opinion in Biotechnology 13, 52-56.
    Wallace, G.Q., and McNally, E.M. (2009a). Mechanisms of Muscle Degeneration, Regeneration, and Repair in the Muscular Dystrophies. In Annual review of physiology (Palo Alto: Annual Reviews), pp. 37-57.
    Wallace, G.Q., and McNally, E.M. (2009b). Mechanisms of muscle degeneration, regeneration, and repair in the muscular dystrophies. Annual review of physiology 71, 37-57.
    Weintraub, H., Tapscott, S.J., Davis, R.L., Thayer, M.J., Adam, M.A., Lassar, A.B., and Miller, A.D. (1989). Activation of muscle-specific genes in pigment, nerve, fat, liver, and fibroblast cell lines by forced expression of MyoD. Proceedings of the National Academy of Sciences of the United States of America 86, 5434-5438.
    Weller, U., Müller, L., Messner, M., Palmer, M., Valeva, A., Tranum-Jensen, J., Agrawal, P., Biermann, C., Döbereiner, A., Kehoe, M.A., et al. (1996). Expression of Active Streptolysin O in Escherichia coli as a Maltose-Binding-Protein-Streptolysin-O Fusion Protein. European Journal of Biochemistry 236, 34-39.
    Yun, K., and Wold, B. (1996). Skeletal muscle determination and differentiation: story of a core regulatory network and its context. Current opinion in cell biology 8, 877-889.

    QR CODE
    :::