| 研究生: |
彭韶驊 Shao-hwa Peng |
|---|---|
| 論文名稱: |
Chirp視覺誘發電位為基礎之大腦人機介面 - FPGA實現 Chirp-VEP Based BCI system – FPGA Implementation |
| 指導教授: |
徐國鎧
Kuo-Kai Shyu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | Chirp 信號 、分數傅立葉轉換 、大腦人機介面 、穩態視覺誘發電位 、Chirp 視覺誘發電位 |
| 外文關鍵詞: | Chirp signal, Fractional Fourier Transform, BCI, SSVEP, Chirp-VEP |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文之主軸是將chirp 信號及分數傅立葉轉換實現於FPGA,並將此
技術應用於大腦人機介面上,即Chirp 視覺誘發電位為基礎之大腦人機介面。
若想將chirp 信號及分數傅立葉轉換完美之實現於FPGA,需要耗費相當大
之記憶體,此將使成本提高。因此本篇提出了chirp 信號之分段差分最佳化
近似,以及分數傅立葉轉換之泰勒展開式近似,來分別將其實現於FPGA。
傳統以穩態視覺誘發電位為基礎之大腦人機介面,其刺激源皆為定頻訊號,
可控制刺激源數量之參數除了有限之頻帶,只有相位一種。且自然環境較
容易出現定頻雜訊,因此系統之訊雜比將會較容易受到影響。而Chirp
視覺誘發電位為基礎之大腦人機介面將可解決以上問題,控制刺激源數量
之參數變為刺激時間、頻率變化率與起始頻率三樣,且因為自然界幾乎不
會出現固定頻率變化率之雜訊,因此對於系統之SNR 將會有所改善。
This study implements Chirp signal and Fractional Fourier Transform in
FPGA, and the technique is applied to the BCI system, and it’s called
Chirp-VEP Based BCI System. If we want to implement Chirp signal and
Fractional Fourier Transform perfectly in FPGA, it will take a sizeable memory
and increase the cost. Therefore, this paper proposes Piecewise Differential
Optimized Approximation for Chirp signal, and the Taylor Series Approximation
for Fractional Fourier Transform to implement in FPGA. The signal source of
stimulation are all fixed-frequency on the traditional SSVEP Based BCI system,
in addition to limited bandwidth, only phase which are controllable parameters
of the number of signal source, and the general environment often exists
fixed-frequency noise, so the system SNR will be more susceptible. The
Chirp-VEP Based BCI System will resolve the above problem. The numbers of
controllable parameter of signal source are stimulation time, chirp rate, and
initial frequency; it’s more than traditional SSVEP Based BCI system. There is
almost no fixed rate of change of frequency in general environment, so the SNR
for the system will be improved.
[1]. M. W. Naouar, E. Monmasson, A. A. Naassani, I. S. Belkhodja and N. Patin,
“FPGA-Based Current Controllers for AC Machine Drives—A Review,”
IEEE Trans. Ind. Electron., VOL. 54, NO. 4, AUGUST 2007
[2]. A. Sathyan, N. Milivojevic, Y. J. Lee, M. Krishnamurthy and A. Emadi,
“An FPGA-Based Novel Digital PWM Control Scheme for BLDC Motor
Drives,” IEEE Trans. Ind. Electron., VOL. 56, NO. 8, AUGUST 2009
[3]. Y. S. Kung, C. C. Huang and M. H. Tsai, “FPGA Realization of an
Adaptive Fuzzy Controller for PMLSM Drive,” IEEE Trans. Ind. Electron.,
VOL. 56, NO. 8, AUGUST 2009
[4]. T. H. S. Li, S. J. Chang and Y. X. Chen, “Implementation of
Human-Like Driving Skills by Autonomous Fuzzy Behavior Control on an
FPGA-Based Car-Like Mobile Robot,” IEEE Trans. Ind. Electron., VOL.
50, NO. 5, OCTOBER 2003
[5]. A. d. Castro, P. Zumel, O. García, T. Riesgo and J. Uceda, “Concurrent
and Simple Digital Controller of an AC/DC Converter With Power Factor
Correction Based on an FPGA,” IEEE Trans. Power Electron., VOL. 18,
NO. 1, JANUARY 2003
[6]. K. K. Shyu, P. L. Lee, M. H. Lee, M. H. Lin, R. J. Lai and Y. J. Chiu,
“Development of a Low-Cost FPGA-Based SSVEP BCI Multimedia
Control System,” IEEE Trans. Biomed. Circuits Syst., VOL. 4, NO. 2,
APRIL 2010
[7]. K. K. Shyu, Y. J. Chiu, P. L. Lee, M. H. Lee, J. J. Sie, C. H. Wu, Y. T. Wu,
and P. C. Tung, “Total Design of an FPGA-Based Brain–Computer
Interface Control Hospital Bed Nursing System,” IEEE Trans. Ind.
Electron., VOL. 60, NO. 7, JULY 2013
[8]. M. Cheng, X. Gao, S. Gao, and D. Xu, “Design and Implementation of a Brain-Computer Interface With High Transfer Rates,” IEEE Trans. Biomed.
Eng., Vol. 49, No. 10, Oct., 2002.
[9]. 賴仁傑, “具增益自動調整之穩態視覺誘發電位量測電路研製” ,國立
中央大學電機工程學系,碩士論文,民國九十八年六月。
[10]. 林銘鴻, “FPGA 即時實現穩態視覺誘發腦電訊號處理之大腦人機
介面” ,國立中央大學電機工程學系,碩士論文,民國九十八年六月。
[11]. 梁家銘, “穩態視覺誘發電位於大腦人機介面之刺激頻率及責任週
期設計” ,國立中央大學電機工程學系,碩士論文,民國一○○年六月。
[12]. T. Tu, Y. Xin, X. Gao and S. Gao, “Chirp-modulated visual evoked
potential as a generalization of steady state visual evoked potential,” IOP
PUBLISHING J. Neural Eng. 9 (2012) 016008 (11pp)
[13]. J. V. Odom, M. Bach, C. Barber, M. Brigell, M. F. Marmor, A. P.
Tormene, G. E. Hoder, and Vaegan, “Visual Evoked Potentials Standard,”
Doc. Ophthalmol., 108, pp. 115-123, 2004.
[14]. E. E. Sutter, “The Brain Response Interface: Communication through
Visually-Induced Electrical Brain Response,” J. Microcomput. Appl., Vol.
15, pp. 31-45, 1992.
[15]. L. B. Almeida, “The Fractional Fourier Transform and Time-Frequency
Representations, ” IEEE Trans. Signal Process., VOL. 42, NO. 11,
NOVEMBER 1994
[16]. Sivakumar, R. “Analysis of Transient Visual Evoked Potential at
Different Rate of Stimulation, ” 2009 Second Int. Conf. Comp. Elec. Eng.
[17]. S. M. Lai, Z. Zhang, Y. S. Hung, Z. Niu, and C. Chang, “A Chromatic
Transient Visual Evoked Potential Based Encoding / Decoding Approach
for Brain–Computer Interface, ” IEEE J. Emerg. Select. Top. Circuits Syst.,
VOL. 1, NO. 4, DECEMBER 2011
[18]. L. M. ai, Z. F. kun and Y. J. fu, “The Feature Extraction and Recognition of Transient Visual Evoked Potential Based on Wavelet
Transform,” Biomed. Eng. Comp. Sci. (ICBECS), 2010 Int. Conf.
[19]. Y. Wang, X. Gao, B. Hong, C. Jia and S. Gao, “Brain–Computer
Interfaces Based on Visual Evoked Potentials,” IEEE Eng. Med. Biol. Mag.,
SEPTEMBER/OCTOBER 2008
[20]. M. Cheng, X. Gao, S. Gao and D. Xu, “Design and Implementation of a
Brain-Computer Interface With High Transfer Rates, ” IEEE Trans. Biomed.
Eng., VOL. 49, NO. 10, OCTOBER 2002
[21]. Microchip Technology Inc., MCP3201 Datasheet, Jan. 2008
[22]. Microchip Technology Inc., MCP4921 Datasheet, Dec. 2006
[23]. L.A. Farwell, E. Donchin,“Talking off the top of your head:A mental
prosthesis utilizing event-related brain potentials,” Electroenceph Clin.
Neurophysiol., Vol. 70, Dec., 1988.