跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林鈺翔
Yu-shiang Lin
論文名稱: 利用時空資料插補車輛偵測器遺漏值之研究
A Study on Using Temoral/Spatial Imputation for Vehicle Detector Missing Values
指導教授: 吳健生
Jiann-sheng Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
畢業學年度: 98
語文別: 中文
論文頁數: 137
中文關鍵詞: 插補績效回饋式類神經網路K-means時空插補遺漏值插補
外文關鍵詞: imputation performance, time interval moving average, accumulated time intervals, single time interval, non-include interpolated detector data, upstream and downstream detector, temporal/spatial imputation, imput missing value
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要目的是利用偵測器時/空資料插補遺漏值,嘗試找出一最佳遺漏值插補組合與績效。首先在空間上採單一偵測器與累積偵測器輸入兩種模式,取上游、下游與上下游三種方式進行空間插補,藉此建立一個最佳的空間插補範圍。接著在時間上分為無待插補偵測器資料與含待插補偵測器資料兩種模式,將歷史資料以單一時間、累積時間與移動平均時間三種資料型態進行時間插補,最後經由插補績效評估得到一最佳時/空插補組合。本研究在分析插補績效前,先利用K-means把偵測器資料分群再以回饋式類神經網路針對流量、速率與占有率進行插補遺漏值的實證分析。結果發現:以流量插補,取上下游累積至第6組偵測器含自我資料的前20分鐘平均歷史資料,可以獲得最佳插補績效;以速率插補,取上下游累積至第7組偵測器含自我資料的前20分鐘平均歷史資料,可以獲得最佳插補績效;以占有率插補,取上下游累積至第6組偵測器含自我資料的前15分鐘平均歷史資料,可以獲得最佳插補績效。


    The main purpose of this study is the use of detector temporal/spatial data to imput missing values, try to find a best combination and the performance of missing value imputation. At first, in spatial we adopted two modes:single detector datas and accumulation detector datas imputing miss values, and then get three spatial imputatiol ways:upstream, downstream,upstream and downstream detector, to establish an optimal range of spatial imputation. After that, in temporal we assign two modes:non-include interpolated detector data mode and include interpolated detector data mode, and we handled the historical data to a single time interval, accumulated time intervals and time interval moving average of three data types for temporal imputation, the final to get a performance evaluation by the best combination of temporal/spatial imputation.In this study, before analysis the imputation performance, we using K-means method to cluster detector datas, then the information(flow,speed and occupancy) using recurrent neural network to imput missing values and analysis.
    The results showed that:the flow of imputation, taking the upstream and downstream cumulative detectors to no.6 set with self-information the 20 minutes ago mean historical datas could get the best imputation performance; the speed of imputation, taking the upstream and downstream cumulative detectors to no.7 set with self-information the 20 minutes ago mean historical datas could get the best imputation performance; the occupancy of imputation, taking the upstream and downstream cumulative detectors to no.6 set with self-information the 15 minutes ago mean historical datas could get the best imputation performance.

    摘要……………………………………………………………………………….i Abstract……………………………………………………………………...…..ii 誌謝……………………………………………………………………………...iii 目錄…………………………………………………………………………..….iv 圖目錄…………………………………………………………………...…...…vii 表目錄……………………………………………………………………….…...x 第一章 緒論 1 1.1 研究動機 2 1.2 研究目的 2 1.3 研究範圍 2 1.4 研究方法 3 1.5 研究流程 4 第二章 文獻回顧 6 第三章 遺漏值插補方法 12 3.1群聚演算法 13 3.2類神經網路 19 3.2.1倒傳遞類神經網路 23 3.2.2輻狀基底函數類神經網網路 26 3.2.3回饋式類神經網路 29 3.2.4反傳遞類神經網路 31 3.3回饋式類神經網路 35 第四章 實驗設計 40 4.1資料前置整理 40 4.2插補設計 44 4.2.1空間插補 44 4.2.2時間插補 49 第五章 空間插補分析 52 5.1單一偵測器插補 53 5.1.1流量插補 59 5.1.2速率插補 60 5.1.3占有率插補 61 5.2累積偵測器插補 63 5.2.1流量插補 64 5.2.2速率插補 68 5.2.3占有率插補 72 5.3空間插補比較 76 5.3.1插補模式比較 76 5.3.2分群插補比較 80 第六章 時間插補分析 85 6.1無自我資料插補 87 6.1.1插補方式比較 88 6.1.2流量插補 94 6.1.3速率插補 95 6.1.4占有率插補 97 6.2含自我資料插補 99 6.2.1插補方式比較 100 6.2.2流量插補 107 6.2.3速率插補 108 6.2.4占有率插補 110 6.3時間插補比較 112 第七章 結論與建議 116 7.1結論 116 7.2建議 117 參考文獻 119

    1. 陳立信譯,「變異數分析」,初版,華泰書局,1997。
    2. 黃俊英,「多變量分析」,七版,翰蘆圖書,2000。
    3. 吳啓聰譯,「商用統計學-入門與應用」,初版,美商麥格羅希爾,2002。
    4. 黃文龍、黃龍,「統計學」,初版,滄海書局,2004。
    5. 石村貞夫、陳耀茂,「變異數分析入門」,初版,鼎茂圖書,2004。
    6. 林惠玲、陳正倉,「應用統計學」,四版,雙葉書廊,2009。
    7. 林昇甫、洪成安,「神經網路入門與圖樣辨識」,三版,全華科技圖書,2002。
    8. 羅華強,「類神經網路-MATLAB的應用」,初版,清蔚科技股份有限公司,2001。
    9. 牛田一雄、高井勉、木暮大輔,「資料採礦利用Clementine使用手冊」,初版,鼎茂圖書,2006。
    10. 張云濤、龔玲,「資料探勘原理與技術」,初版,五南圖書,2007。
    11. 廖述賢、溫志皓,「資料採礦與商業智慧」,初版,雙葉書廊,2009。
    12. 張斐章、張麗秋,「類神經網路導論:原理與應用」,初版,滄海書局,2010。
    13. 林茂文,「時間數列分析與預測」,三版,華泰文化,2006。
    14. 張堂賢、黃宏仁,「車輛偵測器資料遺失之在線插補技術研究」,運輸學刊,第二十卷第四期,頁377-404,2008。
    15. 廖梓淋,「利用資料填補概念探討車輛偵測器佈設間距」,國立中央大學土木工程學系研究所碩士論文,2009。
    16. 吳冠宏、吳信宏、郭廣洋,「應用分群技術於交通事故資料分析」,品質學報,第十三卷第三期,頁305-312,2006。
    17. 張慶麟,「應用自動車輛辨識預測高速公路路段旅行時間」,國立中央大學土木工程學系研究所碩士論文,2003。
    18. Brian L. Smith, William T. Scherer, James H. Conklin,“Exploring Imputation Techniques for Missing Data in Transportation Management Systems”, Transportation Research Board, Vol. 1836, pp. 132-142, 2003.
    19. Chen, D., Muller, S. G., Mussone, L. and Montgomey, F. , “A Study of Hybrid Neural Network Approaches and the Effects of Missing Data on Traffic Forecasting,” Neural Computing & Applications, pp. 277-286, 2001.
    20. Chen, C., Kwon, J., Rice, J., Skabardonis, A. and Varaiya, P. , “Detecting Errors And Imputing Missing Data For Single Loop Surveillance Systems,” Transportation Research Board January, Washington, D.C, 2002.
    21. Delurgio, S. A., Forecasting principles and applications, McGraw-Hill, 1998.
    22. Gold, D. L., Turner, S. M., Gajewski, B. J. and Spiegelman, C., “Imputing Missing Values In ITS Data Archives For Intervals Under 5 Minutes,” Transportation Research Board 80th Annual Meeting January 7-11, Washington, D.C, 2001.
    23. Huang, X. L. and Zhu, Q. M., “A Pseudo-nearest-neighbor Approach For Missing Data Recovery On Gaussian Random Data Sets,” Pattern Recognition Letters , Vol.23, pp. 1613-1622, 2002.
    24. Huang, C. C. and Lee, H. M., “A Grey-based Nearest Neighbor Approach For Missing Attribute Value Prediction,” Applied Intelligent, Vol.20, No.3, pp. 239-252, 2004.
    25. Li Qu, Li Li, Yi Zhang, Jianming Hu,“PPCA-Based Missing Data Imputation for Traffic Flow Volume: A Systematical Approach”, IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, Vol. 10, No. 3, pp. 512-522, 2009.
    26. Mei Chen, Jingxin Xia, Rongfang Liu,“Developing a Strategy for Imputing Missing Traffic Volume Data”, JOURNAL of the TRANSPORTATION RESEARCH FORUM, Vol. 45, No. 3, pp. 57-76, 2006.
    27. Manoel Castro-Neto, Young-Seon Jeong, Myong-Kee Jeong, Lee D. Han, “Online-SVR for short-term traffic flow prediction under typical and atypical traffic conditions”, Expert Systems with Applications, Vol. 36, Issue. 3, Part 2, pp.6164-6173, 2009.
    28. Satish Sharma, Pawan Lingras, Ming Zhong,“Effect of Missing Value Imputations on Traffic Parameters Estimations from Permanent Traffic Counts”, Transportation Research Board the 82nd Annual Meeting, 2003.
    29. Wen, Y. H., Lee, T. T. and Cho, H. T., “Missing Data Treatment And Data Fusion Toward Travel Time Estimation For ATIS,” Journal of the Eastern Asia Society for Transportation Studies, Vol.6, pp. 2546-2560, 2005.
    30. Yang Zhang, Yuncai Liu ,“Missing Traffic Flow Data Prediction using Least Squares Support Vector Machines in Urban Arterial Streets”, IEEE Symposium on Computational Intelligence and Data Mining, pp. 76-83, 2009.
    31. Zhong, M., Lingras, P. and Sharma, S., “Estimation of missing traffic counts using factor, genetic, neural, and regression techniques,” Transportation Research Part C, No.12, pp. 139-166, 2004.
    32. Zhaobin Liu, Satish Sharma, Sandeep Datla,“Imputation of Missing Traffic Data during Holiday Periods”, Transportation Planning and Technology, Vol. 31, No. 5, pp. 525-544, 2008.

    QR CODE
    :::