跳到主要內容

簡易檢索 / 詳目顯示

研究生: 劉立彥
Li-Yan Liu
論文名稱: IEEE 802.15.4 無線感測網路之效能評估及模型建立
Performance Evaluation and Modeling of IEEE 802.15.4 based Wireless Sensor Network
指導教授: 許健平
Jang-Ping Sheu
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 資訊工程學系
Department of Computer Science & Information Engineering
畢業學年度: 94
語文別: 英文
論文頁數: 39
中文關鍵詞: 802.15.4無線感測網路效能評估
外文關鍵詞: performance evaluation, 802.15.4, WSN
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • IEEE 802.15.4是一種在無線個人區域網路所定義之低資料傳輸率、低功率、低複雜度且短距通訊協定,因此適用於無線感測器網路。相較於一般的無線網路,例如:IEEE 802.11,無線感測網路的資料傳輸率通常較低,因此我們在非飽和輸出量下,利用馬克夫鏈所建立的模型,來分析網路輸出量。本篇論文分析的情境為IEEE 802.15.4 溝槽式載波感測多重存取碰撞避免(slotted CSMA-CA)的頻道存取機制(channel access mechanism)、單點跳躍星狀拓樸(one-hop star topology)、上傳資料傳輸傳輸模式(uplink data transmission mode) 、有信標網路(beacon enabled network),且要求回傳有確認封包(acknowledge packet)。
    除此之外,我們參考MICA-z模擬參數且使用ns-2模擬器來比較分析的結果,也利用模擬的結果來評估網路的效能,我們可以在不同實驗,從圖中找出哪個資料傳輸率或曲線,可達到較佳的網路輸出量。


    IEEE 802.15.4 standard defines the protocol and compatible interconnection for data communication devices using low data rate, low power and low complexity, short-range radio frequency transmissions in a wireless personal area network (WPAN). Since, the data rate in WSNs is usually lower than other wireless networks, e.g. IEEE 802.11, a Markov chain model of IEEE 802.15.4 based WSN is proposed to compute and analyze the throughput under unsaturated traffic conditions instead of saturation throughput. In this work, we consider the IEEE 802.15. 4 slotted CSMA/CA as the channel access mechanism and confine our analysis to 802.15.4 based WSNs operating in a one-hop star topology. The uplink data transmission mode from ordinary sensors to coordinators is considered in a beacon enabled slotted CSMA/CA with acknowledgements. To validate the proposed models, simulations are done using ns-2 with standard parameters of MICA-z. The results are compared to analyze the model behavior of the throughput. For different experiments, we also find out which data rate or which curve in the figures performs better.

    CHAPTER 1 INTRODUCTION 1 CHAPTER 2 SYSTEM MODEL 6 2.1 NETWORK TOPOLOGIES 6 2.2 SUPERFRAME STRUCTURE 7 2.3 DATA TRANSFER METHODS 8 2.4 THE CSMA-CA MECHANISM 10 CHAPTER 3 ANALYTICAL MODELS 13 3.1 OUR CHANNEL ACCESS MECHANISMS 13 3.2 THE MODELS 14 3.2.1 PACKET COLLISION PROBABILITY 15 3.2.2 Probability of Sensing Channel Busy 16 3.2.3 The Markov Chain Model 16 CHAPTER 4 THROUGHPUT ESTIMATION 21 CHAPTER 5 PERFORMANCE EVALUATION 23 5.1 SIMULATION SETUP 23 5.2 SIMULATION RESULTS 24 5.2.1 Analytical and Simulated Results 24 5.2.2 High Data Rate 25 5.2.3 Low Data Rate 27 5.2.4 One-to-one Transmission 29 5.2.4 Different NRT Values 31 5.2.5 Different Node Numbers 33 CHAPTER 6 CONCLUSION 35 REFERENCES 37

    [1] C. Y. Chong and S. P. Kumar, “Sensor Networks: Evolution, Opportunities and Challenges”, in Proc. of IEEE, vol. 91, pp. 1247–1256, Aug, 2003.
    [2] D. Culler, D. Estrin, and M. Srivastava, “Overview of Sensor Networks”, IEEE Computer, vol. 37, pp 41–49, Aug, 2004.
    [3] IEEE 802.15.4, “Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs)”, Oct, 2003.
    [4] G. Lu, B. Krishnamachari, and C. S. Raghavendra, “Performance Evaluation of the IEEE 802.15.4 MAC for Low-Rate Low-Power Wireless Networks”, IEEE Workshop on Energy-Efficient Wireless Communications and Networks (EWCN), 2004.
    [5] B. Bougard, F. Catthoor, D. C. Daly, A. Chandrakasan, and W. Dehaene, “Energy Efficiency of the IEEE 802.15.4 Standard in Dense Wireless Microsensor Networks: Modeling and Improvement Perspectives”, in Proc. Design Automation and Test in Europe Conference and Exhibition, pp.196-201, Mar, 2005.
    [6] J. Zheng and M. J. Lee, “A Comprehensive Performance Study of IEEE 802.15.4”, IEEE Press Book, 2004.
    [7] N. F. Timmons and W. G. Scanlon, “Analysis of the Performance of IEEE 802.15.4 for Medical Sensor Body Area Networks”, in Proc. 1st IEEE International Conference on Sensor and Ad Hoc Communications and Networks (SECON), 2004.
    [8] B. Bougard, F. Catthoor, D. C. Daly, A. Chandrakasan, and W. Dehaene, “Energy Efficiency of the IEEE 802.15.4 Standard in Dense Wireless Microsensor Networks: Modeling and Improvement Perspectives”, in Proc. of the Conference on Design, Automation and Test in Europe, 2005.
    [9] J. Ma, M. Gao, Q. Zhang, L.M. Ni, and W. Zhu, “Localized Low-Power Topology Control Algorithms in IEEE 802.15.4-Based Sensor Networks”, in Proc. 25th IEEE International Conference on Distributed Computing Systems (ICDCS), pp. 27-36, Jun, 2005.
    [10] J. Misic and V. B. Misic, "Duty Cycle Management in Sensor Networks Based on 802.15.4 Beacon Enabled MAC", in Journal of Ad Hoc and Sensor Wireless Networks, vol. 1, pp. 207-233, Mar, 2005.
    [11] J. Misic, V. B. Misic, S. Shafi, "Performance of IEEE 802.15.4 Beacon Enabled PAN with Uplink Transmission in Non-Saturation Mode - Access Delay for Finite Buffers", in Proc. 1st IEEE International Conference on Broadband Networks, pp. 416-425, Oct, 2004.
    [12] S. Shafi, “Performance of a Beacon Enabled IEEE 802.15.4 Cluster with Downlink and Uplink Traffic”, IEEE Transactions on Parallel and Distributed Systems, vol. 17, no. 4, pp. 361–376, Apr, 2006.
    [13] Q. Shi, S. Kyperountas, N. S. Correal, and N. Feng, "Performance Analysis of Relative Location Estimation for Multihop Wireless Sensor Networks", in IEEE Journal on Selected Areas in Communications, vol. 23, no. 4, pp. 830-838, Apr, 2005.
    [14] N. Golmie, D. Cypher, "Performance Analysis of Low Rate Wireless Technologies for Medical Applications", Addison-Wesley, ISBN 0-321-24726-4.
    [15] G. Bianchi, “Performance Analysis of the IEEE 802.11 Distributed Coordination Function”, IEEE Journal on Selected Areas in Communications, vol. 18, Mar, 2000.
    [16] S. Pollin, M. Ergen, S. C. Ergen , B. Bougard, L. V. der Perre, F. Catthoor, I. Moerman, A. Bahai, and P. Varaiya, “Performance Analysis of Slotted IEEE 802.15.4 Medium Access Layer”, available on line at http://www.soe.ucsc.edu/research/ccrg/DAWN/papers/ZigBee_MACvPV.pdf
    [17] A. Koubâa, M. Alves, E. Tovar, “A Comprehensive Simulation Study of Slotted CSMA/CA for IEEE 802.15.4 Wireless Sensor Networks", in Proc. 6th IEEE International Workshop on Factory Communication Systems (WFCS), Jun, 2006.
    [18] J. S. Lee, "An experiment on performance study of IEEE 802.15.4 wireless networks", in Proc. IEEE 10th International Conference on Emerging Technologies and Factory Automation (ETFA), Sep, 2005.
    [19] I. Howitt, R. Neto, J. Wang, and J. M. Conrad, "Extended Energy Model for the Low Rate WPAN", in Proc. 2nd IEEE International Conference on Mobile Ad Hoc and Sensor Systems (MASS), 2005.
    [20] T. R. Park, T. H. Kim, J. Y. Choi, S. Choi, and W. H. Kwon, "Throughput and Energy Consumption Analysis of IEEE 802.15.4 Slotted CSMA-CA", in IEE Electronics Letters, vol. 41, issue 18, Sep, 2005.
    [21] Data sheet for CC2420 2.4GHz IEEE 802.15.4/ZigBee RF transceiver, available on line at http://www.chipcon.com/files/CC2420_Data_Sheet_1_4.pdf

    QR CODE
    :::