跳到主要內容

簡易檢索 / 詳目顯示

研究生: 魏無忌
Wu-Gee Wei
論文名稱: 尖晶石材料MnV₂O₄結構與磁性關聯研究
Study on the Correlation of Structure and Magnetism in Spinel Material MnV₂O₄
指導教授: 楊仲準
Chun-Chuen Yang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 76
中文關鍵詞: MnV₂O₄尖晶石過渡金屬氧化物
外文關鍵詞: MnV₂O₄, spinel, transition metal oxides
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在探討以固態反應法合成之尖晶石結構材料Mn₁.₀₉V₁.₈₆O₄的基礎物理性質,透過一系列材料分析技術,包括X光粉末繞射(XPD)、中子粉末繞射(NPD)、穿透式電子顯微鏡(TEM)、拉曼光譜、介電性量測、鐵電性測試,以及物理量測(PPMS)分析,研究MnV₂O₄的結構與物理性質。結果顯示MnV₂O₄ 樣品為粒徑約 0.3–0.4 μm之多晶微米級顆粒。X光粉末繞和中子粉末繞射(NPD)的量測結果顯示樣,Mn、V和O的比例和結構為,Mn₀.₉₉OV₁.₈₆Mn₀.₁O₃(Mn₁.₀₉V₁.₈₆O₄)。選區電子繞射和高解析度TEM,顯示樣品為純相。Raman量測結果指出自80 K至300 K的溫度範圍內,皆維持穩定的立方晶系Fd3 ̅m空間群結構,未觀察到結構相變現象。搭配能量色散光譜(EDS)分析與 XRD結果,確認樣品具有組成均勻、純度高且結晶良好的單相特性。X光吸收光譜(XAS)進一步揭示,Mn元素之氧化態約等於 +2 價,V元素則約等於 +3 價。
    變溫中子繞射實驗顯示,Mn₁.₀₉V₁.₈₆O₄ 材料於約 52.5K 發生結構相變,並伴隨明顯的磁性轉變。低於此溫度,材料進入亞鐵磁性相,其磁性主要由 A site 原子貢獻,磁矩飽和值約為 4.38 μB/atom;相較之下,B site 原子的磁矩較小,約為 0.73 μB/atom,並與 A site 自旋方向呈現反平行排列。磁化率量測亦顯示材料在 53 K 發生磁相變,與中子繞射結果相符。進一步的磁滯曲線分析顯示,在 4 K 時具有明顯的磁滯現象,且飽和磁矩為 2.7 μB /f.u.,與中子繞射所推算出的理論值 0.9 μB/f.u.數量級相當。
    變溫拉曼光譜測量中,在650 cm⁻¹處觀察到對應 A1g與T2g之振動峰,約380 cm⁻¹處則對應Eg 模。此三種特徵峰於 80–300 K 間其頻率與相對強度均未呈現明顯變化,進一步驗證晶體結構在該溫區內穩定,亦未見熱脹冷縮或相變行為。在介電性分析方面,於升溫至 125 K 時,在低頻區(< 1 kHz)出現電容轉折行為,推測與缺陷極化(defect-related polarization)有關;然而,高頻區(> 0.01 MHz)並未顯示明顯差異,推論離子極化對溫度變化不具敏感性,此一結果亦與拉曼光譜的觀察一致。


    This study aims to investigate the fundamental physical properties of the spinel-structured compound Mn₁.₀₉V₁.₈₆O₄ synthesized via the solid-state reaction method. A series of characterization techniques, including X-ray powder diffraction (XPD), neutron powder diffraction (NPD), transmission electron microscopy (TEM), Raman spectroscopy, dielectric measurements, ferroelectric testing, and physical property measurement system (PPMS) analysis, were employed to examine the structure and physical properties of MnV₂O₄. The results show that the MnV₂O₄ sample consists of polycrystalline particles with sizes ranging from approximately 0.3 to 0.4 μm.

    XPD and NPD measurements indicate that the chemical composition and structure correspond to Mn₀.₉₉OV₁.₈₆Mn₀.₁O₃, equivalent to Mn₁.₀₉V₁.₈₆O₄. Selected area electron diffraction (SAED) and high-resolution TEM analyses reveal that the sample is pure phase without any impurity. Raman spectra collected from 80 K to 300 K confirm a stable cubic phase with space group Fd-3̅m, with no signs of structural phase transitions within this temperature range. Combined with energy-dispersive X-ray spectroscopy (EDS) and XRD results, the sample is verified to be a high-purity, single-phase material with uniform composition and good crystallinity. X-ray absorption spectroscopy (XAS) further reveals that Mn and V ions are primarily in the +2 and +3 oxidation states, respectively.

    Temperature-dependent neutron diffraction measurements indicate a structural phase transition at approximately 52.5 K, accompanied by a significant magnetic transition. Below this temperature, the material enters a ferrimagnetic phase, with the magnetic moment mainly contributed by A-site atoms, reaching a saturation value of approximately 4.38 μB per atom. In contrast, B-site atoms exhibit smaller moments (~0.73 μB per atom) aligned antiparallel to the A-site spins. Magnetic susceptibility measurements also reveal a magnetic transition around 53 K, consistent with the neutron diffraction results. Further magnetic hysteresis analysis at 4 K shows a clear hysteresis loop with a saturation magnetization of 2.7 μB per formula unit, which is of the same order of magnitude as the theoretical value of 0.9 μB/f.u. derived from neutron data.

    In temperature-dependent Raman spectra, vibration modes corresponding to A1g and T2g appear around 650 cm⁻¹, while a peak near 380 cm⁻¹ corresponds to the Eg mode. The frequency and relative intensity of these three characteristic peaks remain largely unchanged across the 80–300 K range, further confirming the structural stability of the crystal without evidence of thermal expansion/contraction or phase transitions. In the dielectric analysis, a capacitance anomaly is observed around 125 K in the low-frequency region (< 1 kHz), which is presumed to be related to defect-induced polarization. However, no significant changes are found in the high-frequency region (> 0.01 MHz), suggesting that ionic polarization is not sensitive to temperature variations. This observation is consistent with the findings from Raman spectroscopy.

    摘要 i ABSTRACT iii 致謝 v 目錄 vi 圖目錄 viii 表目錄 xi 一、 簡介 1 1-1 尖晶石族簡介 1 1-2 文獻回顧 3 二、 基礎理論 9 2-1 基礎理論 9 2-1-1 磁性理論 9 2-1-2 X光繞射儀 17 2-1-3 X-ray吸收光譜 (X-ray absorption spectroscopy) 21 2-1-4 拉曼光譜(Raman spectroscopy) 22 三、 樣品製備及儀器介紹 25 3-1 樣品製備(Sample Preparation) 25 3-2 儀器介紹 26 3-2-1 X光繞射儀 (NSSRC 19A1) 26 3-2-2 中子繞射儀(WOMBAT) 29 3-2-3 拉曼光譜儀(Horiba iHR550) 31 3-2-4 物理特性量測系統(PPMS) 33 3-2-5 吸收光譜(EXAFS) 34 四、 Mn₁.₀₉V₁.₈₆O₄ 晶格結構 35 4-1 X光繞射分析 35 4-2 中子繞射分析 44 4-3 TEM 47 4-4 X光吸收光譜 49 4-5 材料磁性 53 五、 Mn₁.₀₉V₁.₈₆O₄材料性質 55 5-1 拉曼光譜 55 5-2 介電係數量測 57 六、 結論 59 七、 參考文獻 60

    [1] T. Suzuki, M. Katsumura, K. Taniguchi, T. Arima, and T. Katsufuji, "Orbital Ordering and Magnetic Field Effect in MnV2O4," no. PRL 98, 127203, 2007.
    [2] R. Plumier and M. Sougi, "Observation of a first order transition in the ferrimagnetic spinel MnV2O4," no. Solid State Commun. 64, p. 53, 1987.
    [3] R. Plumier and M. Sougi, "Observation of a first-order transition at T < Tc IN MnV2O4," no. Physica B 155, p. 315, 1989.
    [4] H. Tsunetsugu and Y. Motome, , "Magnetic transition and orbital degrees of freedom in vanadium spinels," no. PRB 68, 060405(R), 2003.
    [5] D. I. Khomskii and T. Mizokawa, "Orbitally Induced Peierls State in Spinels," no. PRL, 156402, 2005.
    [6] O. Tchernyshyov, Magnetic-Field Switching of Crystal Structure in an Orbital-Spin-Coupled System: MnV2O4, no. PRL 93, 157206, 2004.
    [7] V. O. Garlea, R. Jin, D. Mandrus, B. Roessli, Q. Huang, M. Miller, A. J. Schultz, and S. E. Nagler,, "Magnetic and Orbital Ordering in the Spinel MnV2O4," no. Phys. Rev. Lett. 100, 066404, 2008.
    [8] Mrittika Singha, BarnitaPaul, and Rajeev Gupta, “Low temperature phonon studies and evidence,” J. Appl. Phys., pp. 127, 145901, 9 April 2020.
    [9] E.V. Pannunzio-Miner, J.M. De Paoli, R.D. Sa´nchez, R.E. Carbonio, "Crystal and magnetic structure and cation distribution of Mn2-xV1+xO4 spinels (x= 0, 1/3 and 1)," Materials Research Bulletin, vol. 44, p. p1586–1591, 2009.
    [10] S. Sarkar, T. Maitra, Roser Valentı´, and T. Saha-Dasgupta, "Proposed Orbital Ordering in MnV2O4 from First-Principles Calculations," no. Phys. Rev. Lett. 102, 216405, 2009.
    [11] K. Adachi, T. Suzuki, K. Kato, K. Osaka, M. Takata, and, "Magnetic-Field Switching of Crystal Structure in an Orbital-Spin-Coupled System: MnV2O4," no. Phys. Rev. Lett. 95, 197202, 2005.
    [12] 王進威, "中子粉末繞射簡介及其應用," 物理雙月刊, vol. 43:2, pp. 27-34, 2021.
    [13] N. E. BRESE AND M. O'KEEFFE , "Bond-Valence Parameters for Solids," Acta Cryst. , vol. B47, pp. 192-197, 1991.
    [14] R. D. SHANNON, "Revised Effective Ionic Radii and Systematic Studies of Interatomie Distances," Acta Cryst., no. A32, p. 751, 1976.
    [15] Wancong Leng, Leilei Cui, Yang Liu, and Yun Gong*, "MOF-Derived MnV2O4/C Microparticles with Graphene Coating Anchored on Graphite Sheets: Oxygen Defect Engaged High Performance Aqueous Zinc-Ion Battery," no. Adv. Mater. Interfaces, 2022.
    [16] R. Parmar,ab D. B. de Freitas Neto,b E. Y. Matsubara,b R. Gunnella, “Electro-insertion of Mn2+ ions into V2O5.nH2O on MWCNTs coated carbon felt for binder-free Na+ion battery electrodes†,” Sustainable Energy & Fuels, pp. 3951-3962, 2020,.
    [17] Kroumova et. al., "Bilbao Crystallographic Server : Useful Databases and Tools for Phase-Transition Studies," Phase Transitions (2003), Vols. Nos. 1-2, no. 76, pp. 155-170, 2003.
    [18] K. Takubo, R. Kubota, T. Suzuki, T. Kanzaki, S. Miyahara, N. Furukawa and T. Katsufuji, "Evolution of phonon Raman spectra with orbital ordering in spinel MnV2O4," Physical Review B, vol. 84, p. 094406, 2011.

    QR CODE
    :::