跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李建中
chien-chung Li
論文名稱:
The weighted boundedness of Calderon-Zygmund operators
指導教授: 李明憶
Ming-Yi Li
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
畢業學年度: 97
語文別: 英文
論文頁數: 23
中文關鍵詞: 哈代加權空間分子刻劃原子分解g函數
外文關鍵詞: Ap weights, g-function, molecular character, weighted Hardy spaces, Littlewood paley, atomic decomposition
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 這篇論文中,我們用兩種手法來討論當w屬於A1權,且n/(n+ε)<p≤1時,Calderón-Zygmund算子在Hp的加權有界性。一種是用傳統的原子分解以及分子刻劃來證明;另外一種方法則是用到Calderón表示定理及Littlewood-Paley的理論來得到。


    In this article, we show that Calderón-Zygmund operators are bounded on weighted Hardy space H_w^p provided w∈A_1 and n/(n+ε)<p≤1, the regular exponent ε of the Calderón-Zygmund kernel. There are two ways to get the main result, one is using the molecule characterization, the other is using the Littlewood-Paley theory.

    1.Introduction 1 2.Preliminary 3 3.Weighted boundedness of CZOs on H_w^p (R^n) 5 4.Weighted CZOs on H_w^p via Littlewood-Paley theory 7 Reference 18

    [CF] R. R. Coifman and C. Fefferman
    Weighted norm inequalities for maximal functions and singular integrals, Studia Math., 51(1974), 241-250.
    [D] J. Duoandikoetxea,
    "Fourier Analysis", Addison-Wesley and Universidad Autonoma de Madrid, 1995.
    [G] J. Garcia-Cuerva
    Weighted Hp spaces, Dissertations Math., 162(1979), 1-63.
    [GR] J. Garcia-Cuerva, J. Rubio de Francia,
    "Weighted Norm Inequality and Related Topics", North-Holland, Amsterdam, 1985.
    [HMW]R. Hunt, B. Muckenhoupt, and R. Wheeden
    Weighted norm inequalities for the conjugate function and Hilbert transform, Trans. Amer. Math. Soc., 176(1973), 227-251.
    [HLL] Y. Han, M.-Y. Lee, C.-C. Lin,
    Atomic decomposition and boundedness of operators on weighted Hardy spaces, Canad. Math. Bull.,to appear.
    [HS] Y. Han and E. T. Sawyer
    Para-accretive functions, the weak boundedness property and the Tb theorem, Rev. Mat. Iberoamericana, 6(1990), 17-41.
    [LL]M. Y. Lee and C. C Lin
    The molecular characterization of weighted Hardy spaces, J. Funcl. Anal., 188(2002), 442-460.
    [ST] J.-O. Str"omberg and A. Torchinsky
    "Weighted Hardy Spaces," Lecture Notes in Mathemactics
    Springer-Verlag, Berlin/New York, 1381(1989).

    QR CODE
    :::