跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林汝潔
Ru-Jei Lin
論文名稱: 矽偶合劑存在下環氧樹脂/二氧化矽混成體之研究
指導教授: 陳暉
Hui Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
畢業學年度: 94
語文別: 中文
論文頁數: 85
中文關鍵詞: 環氧樹脂二氧化矽
外文關鍵詞: Silica, epoxy
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用溶膠-凝膠法(sol-gel process)製備環氧樹脂(Epoxy)與二氧化矽(SiO2)有機無機混成體。 首先,將無機系統中的四乙氧基矽烷、矽偶合劑、水、乙醇先進行初步水解反應生成前置物,再將此前置物與有機系統環氧樹脂均勻混合,加熱硬化即可製得環氧樹脂/二氧化矽有機無機混成體,並將所製備的有機無機混成體利用微差掃瞄熱分析儀(DSC)、熱重分析儀(TGA)、掃描式電子顯微鏡(SEM)以及霍氏轉換紅外線光譜儀(FTIR)等儀器進行分析。 結果顯示,在無機系統中添加適量矽偶合劑(KBM403)可以有效地提高混成體的耐熱性質,因為矽偶合劑KBM403一端帶有環氧官能基可與有機環氧樹脂進行開環反應產生架橋,另一端矽氧烷官能基同時可與四乙氧基矽烷、水進行水解縮合反應產生-O-Si-O-共價鍵結,能有效地在有機無機相間提供部分的共價鍵結,但是添加過量時會降低架橋密度反而會使耐熱性質下降,由TGA與DSC的結果可以發現添加5mole%的KBM403之混成體耐熱性質最佳。 除此之外,由TGA與DSC的結果可以得知,混成體隨著無機物添加量的增加,其IPDT值(Integral procedure decomposition temperature)、Tg(玻璃轉化溫度)、Tdmax(最大熱裂解速率之溫度)都有提升的趨勢,也就表示無機物的添加有效地提高混成體的耐熱性質與熱穩定性。


    目錄......................................................................................................I 表目錄.................................................................................................III 圖目錄..................................................................................................IV 第一章 緒論..........................................................................................1 第二章 實驗........................................................................................13 2-1 實驗藥品...............................................................................14 2-2 實驗儀器...............................................................................15 2-3 環氧樹脂/二氧化矽混成材料之製備..................................15 2-4環氧樹脂/二氧化矽混成材料之測試...................................16 2-4-1 熱重損失測試................................................................16 2-4-2恆溫式DSC測試...........................................................17 2-4-3 玻璃轉移溫度測試.......................................................17 2-4-4 紅外線光譜分析...........................................................17 2-4-5 SEM測試.......................................................................17 第三章 結果與討論............................................................................18 3-1 環氧樹脂與有機無機混成材料的反應溫度分析.................19 3-2環氧樹脂/二氧化矽混成材料的製備條件....................... .....23 3-2-1 無機前置物製備條件對混成材料的影響............... ....23 I 3-2-2 反應時間對混成材料的影響........................................28 3-2-3矽偶合劑種類對混成材料的影響.................................32 3-3 環氧樹脂/二氧化矽混成材料的性質分析............................38 3-3-1 矽偶合劑添加量對混成材料性質的影響....................38 3-3-2 無機添加量對混成材料性質的影響............................53 3-4環氧樹脂/二氧化矽混成材料定性分析.................................66 3-4-1 FTIR分析.......................................................................66 3-4-2 SEM分析.......................................................................68 第四章 結論........................................................................................71 參考文獻..............................................................................................73 II 表目錄 Table 3-1 Preparation conditions of epoxy and epoxy/SiO2 hybrid materials……………………………………………………….…..20 Table 3-2 preparation conditions and appearance of epoxy and epoxy/SiO2 hybrid materials…………………………………….…26 Table 3-3 preparation conditions and appearance of epoxy/SiO2 hybrid materials………………………………...…………………………30 Table 3-4 preparation conditions and appearance of epoxy and epoxy/SiO2 hybrid materials……………………………………….35 Table 3-5 preparation conditions and appearance of epoxy/SiO2 hybrid materials…………………………………………………………...42 Table 3-6 The thermal characteristics of various Epoxy/SiO2 hybrid materials…………………………………………………….……..45 Table 3-7 preparation conditions and glass transition temperatute of epoxy/SiO2 hybrid materials……………………………………....50 Table 3-8 preparation conditions and appearance of epoxy and epoxy/SiO2 hybrid materials……………………………………......56 Table 3-9 The thermal characteristics of Epoxy and Epoxy/SiO2 hybrid materials……………………………………………………….…..59 III 圖目錄 Fig 1-1 The structure of DGEBA…………….…………………....…...3 Fig 1-2 Effects of PH in aqueous silica sol-gel system............................10 Fig 3-1 DSC curves of epoxy and epoxy/SiO2 hybrid material at 800C...21 Fig 3-2 DSC curves of epoxy and epoxy/SiO2 hybrid material at 1700C.22 Fig 3-3 the TGA curves of epoxy(A0) and epoxy/ SiO2 hybrids materials (P1T60、P2T60、P1T30、P2T30)…………………………………..27 Fig 3-4 The TGA curves of epoxy/ SiO2 hybrids materials (m15、m30、h1、h2、h3)………………………………………………………….31 Fig 3-5 The structure of coupling agents………………………………..36 Fig 3-6 TGA curves of epoxy(E0) and different epoxy/SiO2 hybrids (M403、E402、M603、M13、M22)………………………………..37 Fig 3-7 TGA curves of different epoxy/SiO2 hybrid materials(M5、M10、M20、M40、M80、M100) under N2………………………………..43 Fig 3-8 TGA curves of different epoxy/SiO2 hybrid materials(M5、M10、M20、M40、M80、M100) under air………………………….….44 Fig 3-9 Effect of KBM403 content in Epoxy/SiO2 hybrid materials on IPDT under nitrogen and air conditions…………………………...46 Fig 3-10 DTG curves of different epoxy/SiO2 hybrid(M5、M10、M20、M40、M80、M100)under N2……………………………………..47 Fig 3-11 DTG curves of different epoxy/SiO2 hybrid(M5、M10、M20、 IV M40、M80、M100)under air………………………….……..48 Fig 3-12 Effect of KBM403 content in Epoxy/SiO2 hybrid materials On Tdmax……………………………….…………………….……...49 Fig 3-13 DSC curves of different epoxy/SiO2 hybrids (M5、M10、M20、M40、M80、M100).............51 Fig 3-14 Effect of KBM403 content of Epoxy/SiO2 hybrid materials on Tg………………………….……………………………………52 Fig 3-15 TGA curves of epoxy(S0) and different epoxy/SiO2 hybrids (S2、S5、S10) under air……………….………………………57 Fig 3-16 TGA curves of epoxy(S0) and different epoxy/SiO2 hybrid (S2、S5、S10) under N2…………………………….……………….58 Fig 3-17 Effect of Silica content of Epoxy and Epoxy/SiO2 hybrid materials on IPDT under nitrogen and air conditions……….….60 Fig 3-18 DTG curves of epoxy(S0) and different epoxy/SiO2 hybrid (S2、S5、S10) under air…………………………….…………61 Fig 3-19 DTG curves of epoxy(S0) and different epoxy/SiO2 hybrid (S2、S5、S10) under N2………………………………….……62 Fig 3-20 Effect of Silica content of Epoxy and Epoxy/SiO2 hybrid materials on Tdmax ………………….…………………………..63 Fig 3-21 DSC curves of epoxy(S0) and different epoxy/SiO2 hybrids (S2、S5、S10)…………………………………………………64 Fig 3-22 Effect of Silica content of Epoxy and Epoxy/SiO2 hybrid materials on Tg…………………………………………………65 V Fig 3-23 FTIR spectra of (a)pure Epoxy (b)Epoxy/SiO2 (10%)(c)SiO2.........................................................................................67 Fig 3-24 SEM of epoxy/SiO2 hybrid materials without KBM403….......69 Fig 3-25 SEM of epoxy/SiO2 hybrid materials with 5mole%KBM403..70 VI

    1. 溫至中, 林天生, 工業材料 153, 109 (1999)
    2. 郭文法, 工業材料 125, 129 (1997)
    3. H. Gleiter, Progree in Mater.Sci. 33, 223 (1989)
    4. 廖建勳, 工業材料 125, 108 (1997)
    5. R. Prileshajew, Chem. Zentr, 2, 1297 (1911)
    6. 彭耀寰, 高分子材料, 大中國圖書公司 34 (1995)
    7. 賴耿陽, 環氧樹脂應用實務, 復漢出版社 120 (1999)
    8. J. L. Hedrick, I. Yilgor, G. L. Wilkes, J. E. McGrath, Polymer Bulletin,33 , 303 (1985)
    9. 王春山, 化工技術 3, 166 (1995)
    10. B. E. Yoldas, J. Mater. Sci., 14, 1843 (1979)
    11. M. Nogami, Y. Moriya, J. Non-Cryst. Solids, 37, 191 (1980)
    12. H. Schroeder, Phys. Thin Film, 5, 87 (1969)
    13. J. L. Woodhead, Silicate Ind., 37,191 (1972)
    14. L. Levene, I. M. Thomas, U.S. Patent 3, 640 (1972)
    15. H. Dislich, Angewandt Chemie, 10,363 (1971)
    16. H. K. Schmidt, Mater. Res. Soc. Symp. Proc., 32, 327 (1984)
    17. Society, Washington , 333 (1988)
    18. H. K. Schmidt, Mater. Res. Soc. Symp. Proc., 180, 961 ( 1990)
    19. J. D. M ackenzie, J. Sol-Gel Sci. Tech., 2, 81 (1994)
    20. U. Schubert, Hu. sing, N. Lorenz, A. Chem. Mater., 7, 2010 (1995)
    21. D. A. Loy, K. J. Shea, Chem. Rev., 95, 1431 (1995)
    22. P. Sanchez, Judenstein, C. J. Mater. Chem., 6, 511 (1996)
    23. K. J. Shea, D. A. Loy, O.W. Webster, Chem. Mater., 1, 574 (1989)
    24. K. J. Shea, D. A. Loy, O.W. Webster, J. Am. Chem. Soc., 114, 6700 (1992)
    25. K. M. Choi, K. J. Shea, J. Am. Chem. Soc., 116, 9052 (1994)
    26. K. M. Choi, K. J. Shea, Phys. Chem., 98 ,3207 (1994)
    27. K. M. Choi, J. C. Hemminger, K. J. Shea, J. Phys. Chem., 99, 4720 (1995)
    28. R. Aelion, A. Loebel, F. Eirich, Am. Chem. Soc. J., 72, 124 (1950)
    29. R. Aelion, A. Loebel, F. Eirich, Recueil, 69, 61 (1950)
    30. B. E. Yoldas, J.Mater. Sci., 14, 1843 (1979)
    31. M. Nogami, Y. Moriya, J. Non-Cryst. Solids, 37, 191 (1980)
    32. L. C. Klein, G. J. Garvey, J. Non-Cryst. Solids, 38, 39 (1980)
    33. S. P. Makherju, J. Non-Cryst. Solids, 42, 477 (1980)
    34. D. P. Partlow, B. E. Yoldas, J. Non-Cryst. Solids, 46, 153 (1981)
    35. B. E. Yoldas, J. Non-Cryst. Solids, 51, 105 (1982)
    36. Y. Paoting, L. Hsiaoming, W. Yuguang, J. Non-Cryst. Solids, 52, 511 (1982)
    37. D.W. Schaefer, K. D. Keefer, Mater. Res Soc. Symp. Proc., 73, 277 (1986)
    38. E. J. A. Pope, J. D. Mackenzie, J. Non-Cryst. Solids, 87, 185 (1986)
    39. T. W. Zerda, I. Artaki, J. Jonas, J. Non-Cryst. Solids, 81, 365 (1986)
    40. B. Himmel, T. Gerber, H. Burger, J. Non-Cryst. Solids, 91, 122 (1987)
    41. R. J. P. Corriu, J. J. E. Moreau, P. Thepot, M. C. Wong, Chem. Mater., 4, 1217 (1992).
    42. G. Cerveau, R. J. P. Corriu, C. J. Lepeytre, Organomet. Chem. 548, 99 (1997).
    43. G. Cerveau, R. J. P. Corriu, C. Lepeytre, to be published.
    44. R. K. Iler, The Chemistry of silica (1979).
    45. D. A. Loy, K. J. Shea, Chem. Rev., 95, 1431 (1995).
    46. B. M. Novak, Adv. Mater., ,5, 422 (1993)
    47. G. Philipp, H. Schmidt, J. Non-Cryst. Solids, 63, 283 (1984)
    48. 陳姿秀,中央大學化學工程研究所碩士論文 (2000)
    49. 孫逸民, 謝正悅, 王春山, 化工技術 48, 37 (2000)
    50. G. H. Hsiue, W. J. Wang, F. C. Chang, J. Appl. polym. Sci., 73, 1231(1999)
    51. W. J. Wang, L. H Perng, G. H. Hsiue, F. C. Chang, Polymer, 41, 113 (2000)
    52. C. D. Doyle, Anal. Chem. 33, 77(1961)

    QR CODE
    :::