跳到主要內容

簡易檢索 / 詳目顯示

研究生: 王俊傑
Jiunn-Jye Wang
論文名稱: 順從式足型機器人足部力量控制設計
Force Control Design for Leg of a Compliant Hexapod Robot
指導教授: 鍾鴻源
Hung-Yuan Chung
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 96
語文別: 中文
論文頁數: 94
中文關鍵詞: 脈波寬度調變順從式足型機器人足部力量控制
外文關鍵詞: Pulse Width Modulation (PWM), Compliant Hexapod Robot, Force Control for Leg
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 順從式足型機器人(Compliant Hexapod Robot) 是一種同時具有足型和輪型機器人特徵的機器人架構,藉由不斷的旋轉順從足部機器人可以順利的克服障礙物並達成移動及轉向等控制。當機器人在不同性質的地面移動時會產生不同的摩擦力,造成機器人移動距離控制上的差異,因此本論文的目的在研究順從式足型機器人的足部力量控制,藉以改善順從式足型機器人在移動時的操控性,為了實現足部力量控制本研究在控制命令中定義了4bits 的空間,所以馬達控制器總共可以產生16種不同的PWM 脈波寬度和馬達力量輸出。新增的足部力量控制不但增加機器人在移動時的操控性,以及轉向控制穩定性,此一架構也提供特殊移動步態設計上可行性。


    Due to the movement of Compliant Hexapod Robot is achieved by the force between legs and ground. Therefore, different roughness of land could result in different control force.
    The purpose of this paper is to design the control force of complianthexapod robots so as to improve the stability of Compliant Hexapod Robot. In order to accurately control the legs of a robot, 4-bit force command is proposed.
    The force command would generate 16 kinds of PWM duties to change the motor output. The proposed scheme could also provide the feasibility to design special gaits.

    第一章 緒論 1.1 前言 1.2 文獻回顧 1.3 研究動機 1.5 論文組織 1.4 論文貢獻 第二章 理論基礎 2.1 生物的運動原理與應用 2.2 步伐型態種類 第三章 順從式足型機器人系統架構 3.1 順從式足型機器人外觀 3.2 控制器選擇 3.2.1 數位訊號控制器(Microchip dsPIC33FJ256GP710) 3.2.2 微控制器(Microchip PIC18F4520) 3.3 無線傳輸系統 3.4 致動器與迴授控制 3.4.1 致動器 3.4.2 編碼器 3.5 足部架構 3.6 供應電源的選用 3.7 其餘相關電路應用 3.7.1 功率放大電路 3.7.2 煞車電路 第四章 步態控制方法與足部控制力量 4.1步態規劃設計 4.1.1 對稱式三角步態 4.1.2 站立 4.1.3 準備動作 4.1.4 前進 4.1.5 後退 4.1.6 右轉 4.1.7 左轉 4.1.8 跨越障礙步態 4.1.9 爬坡步態 4.2軟體介紹 4.2.1 整合式開發環境軟體 (MPLAB IDE) 4.2.2 線上除錯器(MPLAB ICD2) 4.2.3 實驗版 4.3 步態控制核心電路 4.3.1 分散式控制架構 4.3.2 步態控制電路設計 4.4 足部控制核心電路 4.4.1 接受步態命令與判斷 4.4.2 足部定位迴授控制 4.5 足部力量設計 4.5.1 馬達控制之脈波寬度調變(PWM)模組 4.5.2 微控制器之脈波寬度調變(PWM)應用 4.5.3 足部力量控制 第五章 實驗結果與討論 5.1 不同力量時的無載測量差異性 5.2 機器人動態實驗 5.2.1 機器人前進 5.2.2 機器人後退 5.2.3 機器人右轉 5.2.4 機器人左轉 5.2.5 機器人跨越障礙物 5.2.6 機器人爬坡 5.2.7 機器人撞擊障礙物 5.2.8 機器人目的地定位控制 第六章 結論與建議 6.1 結論 6.2 建議 參考文獻 著作目錄

    [1] H. Mori, and M. Sano, "A guide dog robot harunobu-5-following a person," IEEE/RSJ International Workshop on Intelligent Robots and Systems, vol. 1, pp. 397-402, 1991.
    [2] R. Goertz, and R. Thompson, "Electronically controlled manipulator ," Nucleonics, pp. 46-47, 1954.
    [3] http://www.aibo.com/,日本 SONY 機器狗。
    [4] http://word.honda.com/robot/,HONDA ASIMO人型機器人。
    [5] S. Hayati, " The rocky 7 Rover:A mars sciencecraft prototype, " Jet Propilsion Laboratory, California Institute of Technology, International Conference on Robotics and Automation, 1997.
    [6] R. Goertz, and R. Thompson, " Electronically controlled manipulator, " Nucleonics, pp. 46-47, 1954.
    [7] D. L. Akin, M. L. Minsky, E. D. Thiel, and C. R. Kurlzman, " Space applications of automation and robots and machine intelligence systems (ARAMIS)-Phase II," NASA Contract Rep. #3734, 1983.
    [8] C. R. Weisbin, and G. Rodriguez, "NASA robotics research for planetary surface exploration, " IEEE Robotics & Automation Magazine, vol. 7, no. 4, pp. 25-34, 2000.
    [9] C. R. Stoker, D. R. Burch, B. P. Hine, and J. Barry, "Antarctic undersea exploration using a robotic submarine with a Telepresence user interface," IEEE Expert, vol. 10, no. 6, pp.14-23, 1995.
    [10] J. S. Robert, N. Ryoji, and N. Junji, " Telepresence mobile robot for security applications, " Proceedings. IECON’91., International Conference, Industrial Electronics, Control and Instrumentation, vol. 2, pp. 1063-1066,1991.
    [11] D.M. Wilson, " Insect walking ," Annual Rev. of Entomology, 11, pp.103-122, 1996.
    [12] H. Cruse, Th. Kindermann, M. Schumm, J. Dean, J. Schmitz, "Walknet - abiologically inspired network to control six-legged walking," Neural Networks, 11, 1435-1447, R. Brooks, S. Grossberg (eds.), 1998.
    [13] R.A. Brooks, "A robust layered control system for a mobile robot," IEEE Journal of Robotics and Automation, vol RA-2, No. 1, pp.14-23, March, 1986.
    [14] R.A. Brooks, "A robot that walks:Emergent behaviors from a Carfully evolved network," Neural Computation, No.1,pp.253-62, 1989.
    [15] R.A. Brooks, The Behavior Language ; User’s Guide, MIT A.I. Memo 1227, 1990.
    [16] R. B. McGhee and G. I. Iswandhi, "Adaptive locomotion of a multilegged robot over rough terrain, " IEEE Trans. Syst., Man, Cybern., vol. SMC-9, no. 4, pp. 176–182, 1979.
    [17] A. P. Bessonov and N. V. Umnov, " The analysis of gaits in six-legged vehicles according to their static stability," in Proc. Symp. Theory Practice Rob. Manipulat., Udine, Italy,1973.
    [18] J. M. Yang and J. H. Kim, "A fault tolerant gait for a hexapod robot over uneven terrain, " IEEE Trans. Syst., Man, Cybern., B,vol. 30, pp. 172–180, Feb. 2000.
    [19] R. Altendorfer, N. Moore, H. Komsuoglu, M. Buehler, Jr. H. B. Brown, D. McMordie, U. Saranli, R. J. Full, and D. E. Koditschek, "RHex-a simple and highly mobile hexapod robot," Autonomous Robots, vol. 11, pp. 207-220, 2001.
    [20] R. Altendorfer, U. Saranli, H. Komsuoglu, D. Koditschek, M. Buehler, N. Moore, and D. McMordie, Evidence for Spring Loaded Inverted Pendulum Running in a Hexapod Robot, 2000.
    [21] D. Campbell, and M. Buehler, "Stair descent in the simple hexapod ''RHex'' ," IEEE International Conference on Robotics and Automation, vol. 1, pp. 1380-1385, 2003.
    [22] D. McMordie, C. Prahacs, and M. Buehler, "Towards a dynamic actuator model for a hexapod robot," IEEE International Conference on Robotics and Automation, vol. 1, pp. 14-19, 2003.
    [23] E. Z. Moore, D. Campbell, F. Grimminger, and M. Buehler, "Reliable stair climbing in the simple hexapod ''RHex'' ," IEEE International Conference on Robotics and Automation, vol. 3, pp. 11-15, 2002.
    [24] Pei-Chun Lin, H. Komsuoglu, and D. E. Kodistchek, "A leg configuration sensory system for dynamical body state estimates in a hexapod robot," IEEE International Conference on Robotics and Automation, vol. 1, pp. 1391-1396, 2003.
    [25] U. Saranli, M. Buehler, and D. E. Koditschek, "Design, modeling and preliminary control of a compliant hexapod robot," IEEE International Conference on Robotics and Automation, vol. 3, pp. 2589-2596, 2000.
    [26] U. Saranli, and D. E. Koditschek, "Template based control of hexapedal running," IEEE International Conference on Robotics and Automation, vol. 1, pp. 1374-1379, 2003.
    [27] 郭嘉興,遠端監控功能之順從式足型機器人,國立中央大學電機工程學系碩士論文,2004。
    [28] 陳廷熠,順從式足型機器人設計與改良,國立中央大學電機工程學系碩士論文,2007。
    [29] H. J. Chiel, R. D. Beer, R. D. Quinn, and K. S. Espenschied, "Robustness of a distributed neural network controller for locomotion in a hexapod robot," IEEE Transactions on Robotics and Automation, pp. 293-303, 1992.
    [30] K. S. Espenschied, R. D. Quinn, R. D. Beer, and H. J. Chiel, "Biologically based distributed control and local reflexes improve rough terrain locomotion in a hexapod robot," Robotics and Autonomous Systems, pp. 59-64, 1996.
    [31] Microchip Technology Inc, dsPIC33FJ256GP710 datasheet, 2006.
    [32] Microchip Technology Inc, PIC18F4520 datasheet, 2004.
    [33] 曾百由,dsPIC數位訊號控制器原理與應用,台北:宏友圖書開發股份有限公司,2005。
    [34] 曾百由,微處理器原理與應用(組合語言與PIC18微控制器), 台北:五南圖書出版股份有限公司,2006。

    QR CODE
    :::