| 研究生: |
佐爾法 Zulfa Khalida |
|---|---|
| 論文名稱: |
製冷劑R-245fa在石墨烯塗層中的冷凝傳熱整體翅片管 Condensation Heat Transfer of Refrigerant R-245fa on Graphene Coating Integral Fin-Tubes |
| 指導教授: |
楊建裕
Chien-Yuh Yang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 能源工程研究所 Graduate Institute of Energy Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 冷凝熱傳遞 、石墨烯塗層 、翅片管 |
| 外文關鍵詞: | Condensation heat transfer, Graphene coating, Fin tube |
| 相關次數: | 點閱:18 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
大部分冷凝器的熱傳表面具有高表面能的特性,所以比起滴狀冷凝而言更容易在熱傳表面上生成液膜形成膜狀冷凝。然而膜狀冷凝具有高熱阻的特性進而導致熱傳性能低落。而滴狀冷凝則會在表面上形成許多顆粒液滴而不會形成液膜熱阻,使滴狀冷凝的熱傳性能超過膜狀冷凝的四倍。所以可藉由將冷凝器表面改為疏水性表面產生滴狀冷凝的效果。
在冷凝器中經常將石墨烯濺鍍至熱傳表面上形成疏水性表面,因為石墨烯具有高化學穩定性及高耐久性的特點。不幸的是,對於低表面張力的液體,濺鍍石墨烯無法形成滴狀冷凝。可藉由R-245fa的接觸角來證明R-245fa在純銅及具有石墨烯塗層的銅上的接觸角幾乎沒有差異。但是實際上藉由濺鍍石墨烯仍有達到接觸角為小幅度提升或表面能降低的效果。
本實驗使用化學氣相層積法(CVD),將石墨烯濺鍍至純銅圓鰭管表面上以提升冷凝熱傳性能。透過增加小幅度的接觸角,鰭管可在排水區域形成更少的冷凝液使傳熱面積增加。此外,接觸角的增強受到鰭片間距極大影響,這是因為鰭片間距與冷凝液形成及冷凝液的曲率有關。較大的鰭片間距顯示比起較小的鰭片間距有著更凹的半月形狀,並且接觸角也有著較大的提升。
Most of the heat exchanger materials in condensation system associate with high surface energy and prefer inducing film than droplet on the surface. This film condensation mode generates high thermal resistance and leads low heat transfer performance. Meanwhile, the yielded heat transfer performance by dropwise condensation exceeds almost four times higher than filmwise condensation due to providing faster re-nucleation with smaller departure drop size. The dropwise mode occurs due to functionalization of surface becomes hydrophobic surface.
Graphene is frequently used in the condensation system as hydrophobic promoter since offering high chemical stability to induce droplet on the surface with long durability. Unfortunately, the critical surface energy of graphene is not low enough to induce droplet for low surface tension liquid. This is proved by the contact angle difference of R-245fa whose low surface tension, on the graphene coating and bare copper only has a little difference. Even though the contact angle of R-245fa on the graphene coating and bare copper show almost no difference but the contact angle enhancement must occur or at least the wettability on the surface decreases since decreasing surface energy after graphene coating.
Furthermore, the experimental investigation has been conducted to enhance the heat transfer performance of R-245fa on the horizontal integral fin tube surface which is coated by chemical vapor deposition (CVD) graphene. The integral fin tube provides thinning condensate on the drainage area which leads higher chance to increase heat transfer area by enhancing contact angle. Moreover, the contact angle enhancement is immensely affected by fin spacing due to fin spacing controls the occupied condensate and condensate curvatures. Higher fin spacing shows more concave meniscus shape than smaller fin spacing and leads higher chance for contact angle enhancement than smaller fin spacing.
[1] J.R. Collier, John G and Thome, Convective boiling and condensation, third edit, Oxford University Press Inc, New York, (2001).
[2] S. Khandekar, K. Muralidhar, Dropwise condensation on inclined textured surfaces, Springer, New York, (2014).
[3] D.J. Preston, D.L. Mafra, N. Miljkovic, J. Kong, E.N. Wang, Scalable graphene coatings for enhanced condensation heat transfer, Nano Letters. 15 (2015) 2902–2909.
[4] H.C. Hsieh, Study on condensation heat transfer performance of graphene coating on copper surface, National Central University, (2016).
[5] Nusselt (1916) quoted in B. Memory, Free convection laminar film condensation on a horizontal tube with variable wall temperature, International Journal of Heat and Mass Transfer. 34 (1991) 2775–2778.
[6] Rohsenow (1956) quoted in A.F. Mills, R.A. Seban, The condensation coefficient of water, International Journal of Heat and Mass Transfer. 10 (1967) 1815–1827.
[7] R.L. Webb, Principles of Enhanced Heat Transfer, second-edi, Taylor & Francais Group, New York, (1994).
[8] T. Adamek, R.L. Webb, Prediction of film condensation on horizontal integral fin tubes, International Journal of Heat and Mass Transfer. 33 (1990) 1721–1735.
[9] H. Honda, N. Takata, H. Takamatsu, J.S. Kim, K. Usami, Condensation of downward-flowing HFC134a in a staggered bundle of horizontal finned tubes : effect of fin geometry ´ coulement descendant dans Condensation de HFC134a en e un faisceau horizontal de tubes ailetes en quinconce : effet de ´ ometrie des ailet, International Journal of Refrigeration. 25 (2002) 3–10.
[10] J.R. Thome, Condensation on external surfaces, Wolverin Tube Inc, NE Decature AL, (2007).
[11] A. Briggs, J.W. Rose, Effect of fin efficiency on a model for condensation heat transfer on a horizontal, integral-fin tube, International Journal of Heat and Mass Transfer. 37 (1994) 457–463.
[12] S. Namasivayam, A. Briggs, Condensation of ethylene glycol on integral-fin tubes: effect of fin geometry and vapor velocity, ASME Journal of Heat Transfer. 127 (2005) 1197–1206.
[13] R. Kumar, A. Gupta, S. Vishvakarma, Condensation of R-134a vapour over single horizontal integral-fin tubes: Effect of fin height, International Journal of Refrigeration. 28 (2005) 428–435.
[14] S.K. Sajjan, R. Kumar, A. Gupta, Experimental investigation during condensation of R-600a vapor over single horizontal integral-fin tubes, International Journal of Heat and Mass Transfer. 88 (2015) 247–255.
[15] H. Masuda, J.W. Rose, Static configuration of liquid films on horizontal tubes with low radial fins: implications for condensation heat transfer, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 410 (1987) 125–139.
[16] J.W. Rose, Surface tension effects and enhancement of condensation heat transfer, Chemical Engineering Research and Design. 82 (2004) 419–429.
[17] Beatty and Katz (1948) quoted in J.W. Rose, An approximate equation for the vapour-side heat-transfer coefficient for condensation on low-finned tubes, International Journal of Heat and Mass Transfer. 37 (1994) 865–875.
[18] H. Honda, S. Nozu, A prediction method for heat transfer during film condensation on horizontal low integral-fin tubes, Transaction ASME. Journal of Heat Transfer. 109 (1987) 218–225.
[19] J. Rafiee, M.A. Rafiee, Z.Z. Yu, N. Koratkar, Superhydrophobic to superhydrophilic wetting control in graphene films, Advanced Materials. 22 (2010) 2151–2154.
[20] S. Wang, Y. Zhang, N. Abidi, L. Cabrales, Wettability and surface free energy of graphene films, Langmuir. 25 (2009) 11078–11081.
[21] R. Raj, S.C. Maroo, E.N. Wang, Wettability of graphene, Nano Letters. 13 (2013) 1509–1515.
[22] J. Rafiee, X. Mi, H. Gullapalli, A. V. Thomas, F. Yavari, Y. Shi, P.M. Ajayan, N. a. Koratkar, Wetting transparency of graphene, Nature Materials. 11 (2012) 217–222.
[23] A. Kozbial, Z. Li, C. Conaway, R. McGinley, S. Dhingra, V. Vahdat, F. Zhou, B. D’Urso, H. Liu, L. Li, Study on the surface energy of graphene by contact angle measurements., Langmuir : The ACS Journal of Surfaces and Colloids. 30 (2014) 8598–606.
[24] R.L. Webb, T. Rudy, M.A. Kedzierski, Prediction of the condensation coefficient on horizontal integral-fin tubes, International Journal of Heat and Mass Transfer. 107 (1985) 369–376.
[25] J.W. Rose, On the mechanism of dropwise condensation, International Journal of Heat and Mass Transfer. 10 (1966) 755–762.
[26] D. Torresin, M.K. Tiwari, D. Del Col, D. Poulikakos, Flow condensation on copper-based nanotextured superhydrophobic surfaces, Langmuir. 29 (2013) 840–848.
[27] C.W. Pao, T.H. Liu, C.C. Chang, D.J. Srolovitz, Graphene defect polarity dynamics, Carbon. 50 (2012) 2870–2876.
[28] A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Raman spectrum of graphene and graphene layers, Physical Review Letters. 97 (2006) 1–4.
[29] M. Wall, The raman spectroscopy of graphene and the determination of layer thickness, in: Thermo Scientific, Thermo Fisher Scientific Inc, Madison, (2011).
[30] F.M. Fowkes, Attractive forces at interfaces, Industrial & Engineering Chemistry. 56 (1964) 40–52.
[31] K. Rykaczewski, A.T. Paxson, M. Staymates, M.L. Walker, X. Sun, S. Anand, S. Srinivasan, G.H. McKinley, J. Chinn, J.H.J. Scott, K.K. Varanasi, Dropwise condensation of low surface tension fluids on omniphobic surfaces, Scientific Reports. 4 (2014) 4158/1-4158/8.
[32] T.G. Karayiannis, M.M. Mahmoud, Flow boiling in microchannels: Fundamentals and applications, Applied Thermal Engineering. 115 (2017) 1372–1397.