| 研究生: |
饒雅晴 Ya-ching Jao |
|---|---|
| 論文名稱: |
東亞五小島之降水化學比較 Comparison of precipitation chemistry observed at five island stations in East Asia |
| 指導教授: |
林能暉
Neng-huei Lin |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 大氣物理研究所 Graduate Institute of Atmospheric Physics |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 東亞 、長程傳輸 、降水化學 |
| 外文關鍵詞: | East Asia, long-range transport, precipitation chemistry |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究比較東亞五個測站,包括韓國濟州島Gosan站 (126.27°E, 33.48°N, 72 m asl)、日本沖繩Cape Hedo站 (128.2°E, 26.8°N, 60 m asl)、台灣Pengjia Islet站 (彭佳嶼,122.07°E, 25.63°N, 101.7 m asl)、Matsu站 (馬祖,119.92°E, 26.17°N, 97.842 m asl)及Kinmen站 (金門,118.29°E, 24.41°N, 47.88m asl)之降水化學特性。Gosan、Cape Hedo及Pengjia Islet三站屬背景測站,Matsu及Kinmen鄰近中國沿海,屬非背景站。本研究藉由五站不同的特性,探討其降水化學受地理位置分布與氣象條件之影響。其中也利用後推軌跡群集分析分類不同的氣流來源,結果亦顯示各群集的降水中有不同化學組成。三個背景站之雨水中,主要離子為海鹽離子,如Cl-和Na+,佔總離子濃度的50%以上,其次為nss-SO42-。兩個非背景站中,Matsu站雨水最主要的離子為海鹽離子,其次為nss-SO42-及H+,各佔總離子濃度之8%,Kinmen站主要離子仍為海鹽離子,但其nss-SO42-及H+ 所佔總離子濃度比例較高,分別為13%及12%,兩站酸性離子之比例如SO42-及NO3-明顯高於Cape Hedo及Pengjia Islet站。五個測站在東北季風及有春季高壓系統時期,有較高的nss-SO42-濃度,而背景站因無本地的排放源,顯示長程傳輸在該時期對背景站雨水化學影響顯著。五個測站中,Pengjia Islet站有最低之pH平均值,僅4.52,且nss-SO42-濃度亦相對較高(34 μeq l-1)。pH平均值最高的測站為Cape Hedo站,為4.93,且該站之nss-SO42-濃度最低(18 μeq l-1)。nss-SO42- / NO3-之比值可反映何種致酸因子之相對重要性,Gosan站比值為1.63,Cape Hedo為1.88,Pengjia Islet站為1.44,Matsu站為1.58,其中以Kinmen站最高,為1.97。其他更細節的分析亦將於本研究中呈現。
The precipitation chemistry observed at five island stations in East Asia, including Gosan (126.27°E, 33.48°N, 72 m asl), Cheju Island, Korea; Cape Hedo (128.2°E, 26.8°N, 60 m asl), Okinawa, Japan; Pengjia Islet (122.07°E, 25.63°N, 101.7 m asl), Matsu Island (119.92°E, 26.17°N, 97.842 m asl), and Kinmen Island (118.29°E, 24.41°N, 47.88m asl), Taiwan, are compared. Gosan, Cape Hedo and Pengjia Islet are considered as remote and background stations, while, the other two stations are very close to China and considered as non-background stations. This work will elucidate the geographical distribution of chemical composition of rainwater in East Asian oceanic region, and further to assess wet deposition fluxes of sulfate and nitrate in these stations.
Cluster analysis will be used for the backward trajectories to classify the different source of five stations, and it was also shown the different chemical composition of rainwater in each cluster. The daily sampling period at background stations were from January 2003 to December 2008; for non-background stations, it was from April 2005 to December 2008. Principal ions of background stations in rainwater were sea salt ions, such as Cl- and Na+, accounting for more than 50%, and followed by nss-SO42-. In non-background stations, sea salt ions are still the principal ions in Matsu Island, followed by nss-SO42- (8%) and H+ (8%), while in Kinmen Island, the principal ions were still sea salt ions, but the contributions of nss-SO42- (13%) and H+ (12%) were higher.
For all five island stations, rain events containing higher SO42- were found to be associated with northeast monsoon and continental high pressure systems, which are capable of transporting atmospheric pollutants to the sites via long-range transport. The background stations and non-background stations have various chemical compositions with respect to different source regions. It was also shown the influences of long-range transport on background stations, in which have very limited local emissions. Among five stations, Pengjia Islet had the lowest average pH of 4.52 and the relatively higher nss-SO42- of 34 μeq l-1. The highest average pH of 4.93 was found at Cape Hedo, which had the lowest nss-SO42- of 18 μeq l-1. The ratio of nss-SO42- / NO3-, reflecting the relative importance of these two anions, was of 1.63 at Gosan, 1.88 at Cape Hedo, 1.44 at Pengjia Islet, 1.58 at Matsu Island, and 1.97, the highest ratio at Kinmen, respectively. More detailed statistic analyses will be also presented in this study.
Abrahamsen, G., R. Horntvedt and B. Tveite, 1977: Impacts of acid precipitation on coniferous forest ecosystems. Water, Air, and Soil Pollution, 8, 57-73.
Acid Deposition Monitoring Network in East Asia (EANET), 2009. Data Report on the Acid Deposition in the East Asian Region, 2008.
Ali, K., G. A. Momin, S. Tiwari, P. D. Safai, D. M. Chate, and P. S. P. Rao, 2004: Fog and precipitation chemistry at Delhi, North India. Atmos. Environ., 38, 4215-4222.
Arndt, R. L. and G. R. Carmichael, 1995: Long-range transport and deposition of sulfur in Asia. Water, Air and Soil Pollution, 85, 2283-2288.
Asman, W.A.H., 1992: Ammonia emission in Europa: Updated emission and emission variations. Report no. 228471008 RIVM Bilthoven, the Netherlands, 88 Pp.
Ayers, G. P., M. J. Manton, 1991: Rainwater composition at two BAPMoN regional stations in SE Australia. Tellus B, 43, 379-389.
Bertrand, G., H. Celle-Jeanton, P. Laj, J. Rangognio, and G. Chazot, 2008: Rainfall chemistry: long range transport versus below cloud scavenging. A two-year study at an inland station (Opme, France). J. Atmos. Chem., 60, 253-271.
Bridgman, H. A., 1992: Evaluating rainwater contamination and sources in southeast Australia using factor analysis. Atmos. Environ., 26, 2401-2412.
Calvert, J. G., A. Lazrus, G. L. Kok, B. G. Heikes, J. G. Walega, J. Lind and C. A. Cantrell, 1985: Chemical Mechanisms of Acid Generation in the Troposphere. Nature, 317, 27-35.
Chung, Y.-S., Kim, H.-S., Park, K.-H., 2001: Acidic precipitation and large-scale transport of air pollutants observed in Korea. Water, Air, and Soil Pollution, 130, 367-372.
Crawley, J. and H. Sievering, 1986: Factor analysis of the MAP3S/RAINE precipitation chemistry network: 1976–1980. Atmos. Environ., 20, 1001-1013.
Draxler, R. R., G. D. Rolph, 2010: HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory) Model Access via NOAA ARL READY Website. NOAA Air Resources Laboratory, Silver Spring, MD. http://ready.arl.noaa.gov/HYSPLIT.php.
Fairlie, T. D., D. J. Jacob, J. E. Dibb, B. Alexander, M. A. Avery, A. van Donkelaar, and L. Zhang, 2010: Impact of mineral dust on nitrate, sulfate, and ozone in transpacific Asian pollution plumes, Atmos. Chem. Phys., 10, 3999-4012.
Fujita, S., A. Takahashi, J.-H. Weng, L.-F. Huang, H.-K. Kim, C.-K. Li, F. T.C. Huang, and F.-T. Jeng, 2000: Precipitation chemistry in East Asia. Atmos. Environ., 34, 525-537.
Galloway, James N., D. Zhao, J. Xiong, G. E. Likens, 1987: Acid Rain: China, United States, and a Remote Area. Science, 236, 1559-1562.
Galy-Lacaux, C., D. Laouali, L. Descroix, N. Gobron, and C. Liousse, 2009: Long term precipitation chemistry and wet deposition in a remote dry savanna site in Africa (Niger). Atmos. Chem. Phys., 9, 1579-1595.
Hales, J. M., and M. T. Dana, 1979: Regional-scale deposition of sulfur dioxide by precipitation scavenging. Atmos. Environ., 7, 997-1001.
Hara, H., 1993: Acid Deposition Chemistry in Japan. Bull. Inst. Pub. Health, 42, 426-437.
Hara, H., 1998: Acid deposition chemistry in Asia, Europe, and North America. Progress in Nuclear Energy, 32, 331-338.
Huang, D. Y., Y. G. Xu, P. Peng, H. H. Zhang, and J. B. Lan, 2009: Chemical composition and seasonal variation of acid deposition in Guangzhou, South China: Comparison with precipitation in other major Chinese cities. Environmental Pollution, 157, 35–41.
Kang, G., J. L. Collett Jr., D.-Y. Shin, S. Fujita, and H.-K. Kim, 2004: Comparison of the chemical composition of precipitation on the western and eastern coasts of Korea. Water, Air, and Soil Pollution, 151, 11-34.
Kato, N. and H. Akimoto, 2007: Anthropogenic emissions of SO2 and NOx in Asia: Emission inventories. Atmos. Environ., 41, S171-S191.
Keene, W. C., A. A. Pszenny, , J. N. Galloway, and, M. E. Hartley, 1986: Sea-salt corrections and interpretation of constituent ratios in marine precipitation. J. Geophys. Res., 91, 6647-6658.
Lawrence, G. B., 2002: Persistent episodic acidification of streams linked to acid rain effects on soil. Atmos. Environ., 36, 1589-1598.
Liu, J. Q., C. William, and G. P. Wu, 1993: Study of precipitation background value in Lijiang, China. China Environmental Science, 13, 246–251.
National Atmospheric Deposition Program, 2008: NADP/NTN data at http://nadp.sws.uiuc.edu/
Ozeki, T., K. Koide, and T. Kimoto, 1995: Evaluation of Sources of Acidity in Rainwater Using a Constrained Oblique Rotational Factor Analysis. Environ. Sci. Technol., 29, 1638-1645.
Patel, C. K. N., E. G. Burkhardt, and C. A. Lambert, 1974: Acid Rain: A Serious Regional Environmental Problem. Science, 184, 1176-1179.
Post, D., H. A. Bridgman and G. P. Ayers, 1991: Fog and Rainwater Composition in Rural SE Australia. Journal of Atmospheric Chemistry, 13, 83-95.
Rodhe, H., F. Dentener, and M. Schulz, 2002: The global distribution of acidifying wet deposition. Environ. Sci. Tech., 36, 4382–4388.
Sakihama, H., M. Ishiki, A. Tokuyama, 2008: Chemical characteristics of precipitation in Okinawa Island, Japan. Atmos. Environ., 42, 2320-2335.
Schindler, D. W., 1988: Effects of Acid Rain on Freshwater Ecosystems. Science, 239, 149-157.
Schlesinger, W.H. and A.E. Hartley, 1992: A global budget for atmospheric NH3. Biogeochem., 15, 191-211.
Seinfeld, J. H., 1986: Atmospheric Chemistry and Physics of Air Pollution, Willey-Interscience.
Siti Mariam S., Fairus M. D., Nesamalar K., Nurrul Izza T., Siniarovina U. S., Ida Rosmini O., 2009: Compositions of rainwater and aerosols at global atmospheric watch in Danum Valley, Sabah. Malaysian Journal of Analytical Sciences, 13, 107-119.
Sun, M., Y. Wang, T. Wang, S. Fan, W. Wang, P. Li, J. Guo, and Y. Li, 2010: Cloud and the corresponding precipitation chemistry in south China: Water‐soluble components and pollution transport. J. Geophys. Res., 115, D22303.
Tang, A. H., G. S. Zhuang, Y. Wang, H. Yuan, and Y. L. Sun, 2005: The chemistry of precipitation and its relation to aerosol in Beijing. Atmos. Environ., 39, 3397–3406.
Tu, J., Wang, H., Zhang, Z., Jin, X., Li, W., 2005: Trends in chemical composition of precipitation in Nanjing, China, during 1992–2003. Atmospheric Research, 73, 283-298.
Wang, S. H., N. H. Lin, C. F. OuYang, J. L. Wang, J. R. Campbell, C. M. Peng, C. T. Lee, G. R. Sheu, and S. C. Tsay, 2010: Impact of Asian dust and continental pollutants on cloud chemistry observed in northern Taiwan during the experimental period of ABC/EAREX 2005, J. Geophys. Res., 115, D00K24.
Wang, Y., K. M. Wai, J. Gao, X. H. Liu, T. Wang, W. X. Wang, 2008: The impacts of anthropogenic emissions on the precipitation chemistry at an elevated site in North-eastern China. Atmos. Environ., 42, 2959-2970.
Xiao, H., G. R. Carmichael and J. Durchenw, 1997: Long-range transport of SOx and dust in East Asia during the PEM B Experiment. J. Geophys. Res., 102, 28589-28612.
Xu, H., X.-H. Bi, Y.-C. Feng, F.-M. Lin, L. Jiao, S.-M. Hong, W.-G. Liu, X.-Y. Zhang, 2011: Chemical composition of precipitation and its sources in Hangzhou, China. Environ. Monit. Assess., 1-12.
Yamaguchi, K., T. Tatano, F. Tanaka, M. Nakao, M. Gomyoda, and H. Hara, 1991: An analysis of precipitation chemistry measurements in Shimane, Japan. Atmos. Environ., 25, 285-291.
Zhang, M. Y., S. J. Wang, F. C. Wu, X. H. Yuang, and Y. Zhang, 2007: Chemical compositions of wet precipitation and anthropogenic influences at a developing urban site in southeastern China. Atmospheric Research, 84, 311–322.
Zhang, Q., D. G. Streets, G. R. Carmichael, K. B. He, H. Huo, A. Kannari, Z. Klimont, I. S. Park, S. Reddy, J. S. Fu, D. Chen, L. Duan, Y. Lei, L. T. Wang, and Z. L. Yao, 2009: Asian emissions in 2006 for the NASA INTEX-B mission. Atmos. Chem. Phys., 9, 5131-5153.
Zhao, Y., S. Wang, L. Duan, Y. Lei, P. Cao, J. Hao, 2008: Primary air pollutant emissions of coal-fired power plants in China: Current status and future prediction. Atmos. Environ., 42, 8442-8452.
Zuo, J. Y., D. Z. Zhang, G. Y. Shi, Y. Iwasaka, 2003: Effects of dust particlts on particulate sulfate and nitrate formation during their transport in the atmosphere over China Mainland. Advances in Marine Science, 3, 266-271.