| 研究生: |
林嫺雯 Shian-Wen Lin |
|---|---|
| 論文名稱: |
遲滯型細胞神經網絡行進波之結構 Structure of Traveling Waves in Delayed Cellular Neural Networks |
| 指導教授: |
許正雄
Cheng-Hsiung Hsu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系 Department of Mathematics |
| 畢業學年度: | 91 |
| 語文別: | 英文 |
| 論文頁數: | 29 |
| 中文關鍵詞: | 細胞神經網絡 、行進波 |
| 外文關鍵詞: | cellular neural networks, traveling waves |
| 相關次數: | 點閱:20 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
這篇論文主要研究,在一個維度上,遲滯型細胞神經網絡
(CNN)行進波解的結構。利用Monotone Iteration 及
Shooting的方法我們可以證明行進波之解結構隨著速度的改變而有不同的行為。
This thesis is concerned with the global structure of traveling waves
for one-dimensional cellular neural networks with distributed delayed signal
transmission. By using the monotone iteration method and shooting
method, we describe the transition of wave profiles from monotonicity,
damped oscillation, periodicity, unboundedness and back to monotonicity
as the wave speed is varied.
[1] S.-N. Chow, J. Mallet-Paret, and W. Shen, Traveling waves in lattice dynamical
systems, J. Di . Eqns., 149 (1998), pp. 248-291.
[2] L. O. Chua, CNN: A Paradigm for Complexity, World Scientific Series on
Nonlinear Science, Series A, Vol. 31, World Scientific, Singapore, 1998.
[3] L. O. Chua and T. Roska, The CNN paradigm, IEEE Trans. Circuits Syst.,
40 (1993), pp. 147-156.
[4] L. O. Chua and L. Yang, Cellular neural networks: Theory, IEEE Trans.
Circuits Syst., 35 (1988), pp. 1257-1272.
[5] L. O. Chua and L. Yang, Cellular neural networks: Applications, IEEE
Trans. Circuits Syst., 35 (1988), pp. 1273-1290.
[6] T. Erneux and G. Nicolis, Propagation waves in discrete bistable reactiondi
usion systems, Physica D, 67 (1993), pp. 237-244.
[7] I. Gyori and G. Ladas, Oscillating Theory of Delay Di erential Equations
with Applications, Oxford University Press, Oxford, 1991.
[8] C.-H. Hsu and S.-S. Lin, Existence and multiplicity of traveling waves in a
lattice dynamical system, J. Di . Eqns., 164 (2000), pp. 431-450.
[9] C.-H. Hsu, S.-S. Lin and W. Shen, Traveling waves in cellular neural networks,
Internat. J. Bifur. and Chaos, 9 (1999), pp. 1307-1319.
[10] C.-H. Hsu and S.-Y. Yang, On camel-like traveling wave solutions in cellular
neural networks, preprint, 2002.
[11] H. Hudson and B. Zinner, Existence of traveling waves for a generalized
discrete Fisher’s equations, Comm. Appl. Nonlinear Anal., 1 (1994), pp.
23-46.
[12] J. Juang and S.-S. Lin, Cellular neural networks: mosaic pattern and spatial
chaos, SIAM J. Appl. Math., 60 (2000), pp. 891-915.
[13] J. P. Keener, Propagation and its failure in coupled systems of discrete
excitable cells, SIAM J. Appl. Math., 47 (1987), pp. 556-572.
[14] J. Mallet-Paret, The global structure of traveling waves in spatial discrete
dynamical systems, J. Dyn. Di . Eqns., 11 (1999), pp. 49-127.
[15] L. Orzo, Z. Vidnyanszky, J. Hamori and T. Roska, CNN model of the
feature linked synchronized activities in the visual thalamo-cortical system,
Proc. 1996 Fourth IEEE Int. Workshop on CNN and Their Applications,
pp. 291-296, Seville, Spain, June 24-26, 1996.[16] P. Thiran, K. R. Crounse, L.O. Chua, and M. Hasler, Pattern formation
properties of autonomous cellular neural networks, IEEE Trans. Circuit
Syst., 42 (1995), pp. 757-774.
[17] P. Thiran, Dynamics and Self-Organization of Locally Coupled Neural
Networks, Presses Polytechniques et Universitaires Romandes, Lausanne,
Switzerland, 1997.
[18] F. Werblin, T. Roska and L.O. Chua, The analogic cellular neural network
as a bionic eye, Internat. J. Circuit Theory Appl., 23 (1994), pp. 541-569.
[19] P. Weng and J. Wu, Deformation of traveling waves in delayed cellular
neural networks, preprint, 2001.
[20] J. Wu and X. Zou, Asymptotical and periodic boundary value problems
of mixed FDEs and wave solutions of lattice di erential equations, J. Di .
Eqns., 135 (1997), pp. 315-357.
[21] B. Zinner, Existence of traveling wavefront solutions for discrete Nagumo
equation, J. Di . Eqns., 96 (1992), pp. 1-27.