| 研究生: |
宋明一 Ming-Yi Sung |
|---|---|
| 論文名稱: |
微水試驗以兩階段式方法推估薄壁因子與含水層水力導數 |
| 指導教授: |
陳家洵
Chia-Shyun Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 應用地質研究所 Graduate Institute of Applied Geology |
| 畢業學年度: | 89 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 微水試驗 、水力導數 、薄壁因子 |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在一砂質非受壓含水層中,利用一口存有薄壁效應之試驗井,進行微水試驗以推估含水層水力參數。為瞭解在非受壓含水層中井篩進水長度對於微水試驗的影響,共進行22次不同初始水頭h0的微水試驗,其中13組試驗之h0 高於過井篩頂部,其井篩進水長度於試驗期間維持不變;另9組試驗之h0 低於過井篩頂部,其井篩進水長度隨試驗時間而變。本研究發展兩個新的微水試驗數學模式,一個適用於非受壓情況,其地下水位面補注引用Boulton(1954)延滯出水(delay yield)機制;另一個適用於受壓情況但接受環狀定水頭邊界補注。利用此二模式分析22組微水試驗資料,發現在微水試驗初期(小時間段)與中期(中時間段),微水試驗不受地下水位面補注影響,因而在微水試驗初、中期含水層可視為受壓情況。因此,本研究發展兩階段式微水試驗分析方法推估薄壁層厚度rskin、薄壁層水力導數Ks、含水層水力導數Ka及薄壁因子Sw。至於含水層儲水係數S及比出水量Sy,則需要以抽水試驗來決定;此部份不在本研究範圍之內,於潘宗吾(2001)中討論。兩階段式方法的概念模式及分析方法如下: (1)在第一階段微水試驗初期,地下水流動僅拘限於薄壁層中,含水層相對於薄壁層為一定水頭邊界,假設薄壁層的儲水係數為零。第一階段微水試驗的解析解與Bouwer and Rice(1976)微水試驗的解完全相同,因此由Bouwer and Rice(1976)經驗公式所得之有效影響半徑即可視為rskin。利用Bouwer and Rice(1976)方法,以無因次化後井中水頭變化hw(t)/h0與時間t於對數圖上的斜率,配合rskin可推估Ks。Ks隨h0呈反比變化,分析22組微水試驗資料所得之Ks介於4.2×10-5~9.0×10-4(公尺/秒)之間,將22微水試驗資料所得Ks與h0繪於對數圖上,不論h0是否高於或低於井篩頂部,Ks與h0皆組成單一直線。(2)在第二階段微水試驗中期,微水試驗的影響已穿透薄壁層而擴展至含水層中,故薄壁效應以Sw取代。利用Sageev(1986)方法,由此階段可推估Ka與Sw之比值,將Ka/Sw與h0繪於對數圖上,不論h0是否高於或低於井篩頂部,Ka/Sw與h0皆組成單一直線。這兩條log-log直線相互平行,所以(KsSw)/Ka為一定值(在本研究中為3.48),利用此一定值與Strelsova(1988)提出的Sw與rskin、Ka以及Ks之關係式,可分別得到Ka(4.2×10-5~9.0×10-4(公尺/秒))與Sw(19.2)。且推估之Ka現場地質情況相符。潘宗吾(2001)利用本研究所推估之Sw,以小流量抽水試驗推估Ka為1.43×10-4(公尺/秒),落於本研究所推估Ka的範圍之內。潘宗吾(2001)推估的含水層垂直方向水力導數為1.43×10-5(公尺/秒),S為4.51×10-3,Sy為1.13×10-2,均屬合理範圍,可知本研究的結果確實可信。
何春蓀,1986。台灣地質圖說明書。經濟部中央地質調查所。163頁。
塗明寬、陳文政,1990。台灣地質圖說明書─中壢。經濟部中央地質調查所。53頁。
潘宗吾,2001。受薄壁效應影響的單井抽水試驗推估非受壓含水層水文參數之研究。國立中央大學地球物理研究所碩士論文,共49頁。
Abramowitz M., and I.A. Stegun, Handbook of Mathematical Functions, Dover Publications, Inc., New york, 1046pp, 1972.
Barker J. A. and J. H. Black, “Slug test in fissured aquifers,” Water Resour. Res., 19(6), 1558-1564, 1983.
Bouwer H. and R. C. Rice, “A slug test for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells”, Water Resour. Res., 12(3), 423-428, 1976.
Boulton N. S., “Unsteady radial flow to a pumped well allowing for delayed yield form storage,” in Gen. Assem. Rome, Tome II, Int. Assoc. Sci. Hydrol. Publ., 37, 472-477, 1954.
Butler J. J., Jr., C. D. McElwee, and W. Z. Liu, “Improving the quality of parameter estimates obtained from slug test,” Ground Water, 34(3), 480-490, 1996.
Butler J. J. Jr., The Design, Performance, and Analysis of Slug Tests,Lewis Publishers, 243pp, 1998.
Butler J. J. Jr. and J. M. Healey, “Relationship between pumping-test and slug-test parameters : scale effect or artifact ? ” Ground Water, 36(2), 305-313, 1998.
Cooper H. H., J. D. Bredehodft, and I. S. Papadopulos, “Response of a finite-diameter well to an instantaneous charge of water,” Water Resour. Res., 3(1), 263-269, 1967.
Dagan G., “A note on packer, slug, and recovery tests in unconfined aquifers,” Water Resour. Res., 14(5), 929-934, 1978.
Faust C. R. and J. W. Mercer, “evaluation of slug test in wells containing a finite-thickness skin, ” Water Resour. Res., 20(4), 504-506, 1984.
Freeze R. A. and J. A. Cherry, Groundwater, Prentice Hall., Englewood Cliffs, New Jersey, 604pp, 1979.
Hvorslev M. J., “Time lag and soil permeability in ground-water observations,” U.S. Army Corps of Engrs. Waterways Exper. Sta. Bull, 36, 1-50, 1951.
Hyder Z., J. J. Butler Jr., C. D. McElwee, and W. Z. Liu, “Slug tests in partially penetrating wells,” Water Resour. Res., 30(11), 2945-2957, 1994.
Hyder Z. and J. J. Butler, Jr., “Slug test in unconfined formation:an assessment of the Bouwer and Rice technique,” Ground Water, 33(1), 16-22, 1995.
Karasaki K., J. C. Long, and P. A. Witherspoon, “Analytical models of slug tests,” Water Resour. Res., 24(1), 115-126, 1988.
Kruseman G.P. and N.A. de Ridder, Analysis and Evaluation of Pumping Test Data, International Institute for Land Reclamation and Improvement, The Netherlands, 377pp, 1990.
Peres A. M. M., M. Onur, and A. C. Reynolds, “A new analysis procedure for determining aquifer properties from slug test data,” Water Resour. Res., 25(7), 1591-1602, 1989.
Ramey H. J. Jr., R. G. Agarwal, and I. Martin, “Analysis of ‘slug test’ or DST flow period data,” J. Can. Pet. Technol., 14,53,1975.
Sageev A., “Slug test analysis,” Water Resour. Res., 22(8), 1323-1333, 1986.
Stehfest H., “Numerical inversion of Laplace transforms,” Commun. ACM, 13(1), 47-49, 1970.
Streltsova T.D., Well Testing in Heterogeneous Formations, John Wiley & Sons, New York, 413pp, 1988.
Yang Y. J. and T. M. Gate, “Wellbore skin effect in slug-test data analysis for low-permeability geologic materials,” Ground Water, 35(6), 931-937, 1997.