跳到主要內容

簡易檢索 / 詳目顯示

研究生: 呂紹瑋
Shao-Wei Lu
論文名稱: 利用自組裝奈米球微影術製備矽化物
Formation of Silicide Nanodot Arrays and 2D Periodic Nanostructures Using Self-Assembly Nanosphere Lithography
指導教授: 鄭紹良
Shao-Liang Cheng
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
畢業學年度: 94
語文別: 中文
論文頁數: 96
中文關鍵詞: 奈米球微影術奈米環奈米點金屬矽化物
外文關鍵詞: nanosphere lithography, silicide, nanodot, nanoring
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 當元件尺度持續縮小至奈米尺度階段時,深入了解未來先進奈米元件中金屬薄膜與半導體基材間之界面反應是相當重要的一項課題。因此在本研究中將針對大面積二維規則之鎳、鈷金屬奈米點陣列的製備及其金屬薄膜經不同退火處理後與矽晶基材間之界面反應進行探究分析。
    為了在矽晶基材上製備大面積周期性之鎳、鈷金屬奈米點,在本研究中利用聚苯乙烯奈米球微影術(Polystyrene nanosphere lithography, PS NSL) 先在矽晶基材上製備大面積、自行組裝 (Self-Assembly) 排列規則的PS 球陣列結構充當模板 (Template),再於此模板上鍍製鎳、鈷金屬薄膜,經球體舉離步驟後即可於矽晶基材上形成尺寸均勻且具二維週期排列的金屬奈米點陣列。
    由掃描式電子顯微鏡(SEM)、穿透式電子顯微鏡(TEM)及選區繞射(SAED)分析後可發現磊晶的二矽化鎳(NiSi2)與二矽化鈷(CoSi2)奈米點陣分別於350 ℃、
    550 ℃即生成。而從電子繞射圖形分析鑑定得知其與 (001) Si 基材之磊晶方位關係為[001]NiSi2 (or CoSi2)// [001]Si,(200)NiSi2 (or CoSi2)// (400)Si。此結果顯示接近奈米尺度之鎳、鈷金屬點陣可促進磊晶結構矽化物的成長。另外,磊晶金屬矽化物點陣的尺寸隨退火溫度的升高而逐漸減小。進一步經高分辨電子顯微鏡(HRTEM) 分析觀察可發現,此磊晶金屬矽化物奈米點的形狀為一倒金字塔角錐狀。其金字塔角錐狀之塔底面平行於(001)Si,而塔底之四邊刻面平行<110>Si。另外,磊晶相之金屬矽化物奈米點與矽晶相交於{111}晶面。此外,在鎳金屬點陣列研究方面,當退火溫度升至900 ℃時,可發現在鎳矽化物奈米粒子上有許多非晶質氧化矽 (SiOx) 奈米線開始生成,其直徑約在15-20 nm 之間。在Ni-Si系統中,此非晶質SiOx 奈米線的生成可歸因於固-液-固 (solid-liquid-solid, SLS)
    之成長機制。
    另ㄧ方面,在本研究中,經由調變PS 球膠體溶液之滴製步驟與舉離條件,可成功地於(001)矽晶基材上製備六角週期排列的奈米環陣列。經由一系列的實驗觀察與分析結果,得知可能的奈米環陣列生成機制與乾燥過程中之縱向毛細力造成球體形變之作用力有關,並且其奈米環結構的直徑可藉由控制界面活性劑的濃
    度而調變。


    As the device dimensions scale down to nanometer region, in-depth understanding the reaction mechanisms between the nanoscale metal thin film and semiconductor substrate will play an important role in defining the use of these
    nanoscale building blocks in advanced nanodevices. Therefore, in this study,particular emphases are focused on the fabrication of large-area, 2D-ordered nickel and cobalt metal dot arrays and the interfacial reactions of nickel and cobalt metal dots on Si substrates after different heat treatments.
    To fabricate large periodic arrays of Ni and Co metal nanodots on silicon substrate, an effective and economical technique –polystyrene nanosphere lithography (PS NSL) was utilized. After 20-nm-thick metal thin films deposition and
    subsequent lift-off of the PS spheres template, an ordered hexagonal array of triangular metal dots was formed on the surface of Si substrate.
    From the SEM, TEM, and SAED analysis, epitaxial NiSi2 and CoSi2 nanodot arrays were found to form at a temperature as low as 350 ℃ and 550 ℃, respectively. The orientation relationships of epitaxial metal disilicide nanodots with respect to
    (001)Si substrates were identified to be [001] NiSi2 (or CoSi2) // [001] Si and (200)
    NiSi2 (or CoSi2) // (400) Si. The results indicated that the growth of epitaxial NiSi2
    and CoSi2 is more favorable for the metal dot array samples. In addition, the sizes of
    the silicide nanodots were found to decrease with annealing temperature. The epitaxial
    metal disilicide nanodots were identified to be inverse pyramids in shape. The bases
    of the pyramidal metal disilicide nanodots are parallel to the (001)Si wafer surface and
    the faceted edges of the bases of the pyramids are along the <1 1 0> Si directions. The
    epitaxial metal disilicide nanodot/Si interfaces were found to be faceted with {1 1 1}interface planes. Furthermore, for the nickel nanodot samples annealed at 900 ℃,amorphous SiOx nanowires were found to grow on individual nickel silicide nanoparticles. The diameters of these nanowires are in the range of 15–20 nm, and the growths of a-SiOx were controlled by the solid-liquid-solid (SLS) mechanism.
    On the other hand, by tuning the drop-coating processes and lift-off conditions,hexagonal periodic nanoring arrays were successfully fabricated on (001)Si substrates. In addition, the diameters of nanorings can be controlled by adjusting the concentration of surfactant. Based on the results of a series of observation and
    analysis, the possible formation mechanism of nanoring arrays might be related to the
    normal capillary force deforms PS spheres during the drying of a suspension droplet.

    第1 章 簡介........................................................ 1 1-1 前言...........................................................1 1-2 自組裝程序.....................................................2 1-2-1 微奈米球自組裝原理.........................................3 1-2-1-1 微奈米球體間交互作用力..................................3 1-2-1-2 微奈米球體陣列自組裝機制................................6 1-2-2 各種微奈米球自組裝技術....................................10 1-2-2-1 自然滴製法(DROP –COATING).............................10 1-2-2-2 旋轉塗佈法(SPIN-COATING) ..............................10 1-2-2-3 LB-LIKE 自組裝技術.....................................11 1-2-2-4 電場促進自組裝技術.....................................11 1-3 微奈米球微影術................................................12 1-3-1 微影術的發展..............................................12 1-3-2 以微奈米球微影術製備奈米結構..............................14 1-3-2-1 金屬沉積製程技術.......................................14 1-3-2-2 反應離子蝕刻技術.......................................15 1-3-2-3 前驅物鑄造法...........................................16 1-4 金屬矽化物....................................................16 1-4-1 金屬矽化物的應用及製程....................................17 1-4-2 鎳金屬矽化物..............................................18 1-4-3 鈷金屬矽化物..............................................18 1-5 研究動機與目標................................................19 第2 章 實驗步驟....................................................21 2-1 奈米球微影術及金屬矽化物之製備................................21 2-1-1 基材使用前處理............................................21 2-1-2 奈米球膠體溶液配製........................................22 2-1-3 自組裝製備奈米球陣列......................................22 2-1-4 金屬薄膜蒸鍍..............................................23 2-1-5 奈米球舉離................................................23 2-1-6 金屬矽化反應..............................................23 2-2 奈米環陣列之製備..............................................23 2-3 使用儀器及特性分析............................................24 第3 章 結果與討論..................................................25 3-1 微奈米球陣列模板之製備........................................25 3-2 鎳金屬及鎳矽化物奈米點陣列....................................27 3-2-1 鎳金屬點陣形貌觀察分析....................................27 3-2-2 鎳金屬與矽基材界面反應之結構分析..........................28 3-3 鈷金屬及鈷矽化物奈米點陣列....................................31 3-3-1 鈷金屬點陣形貌觀察分析....................................31 3-3-2 鈷金屬與矽基材界面間之結構分析............................32 3-4 奈米環陣列....................................................35 第4 章 結論與未來展望..............................................39 4-1 結論..........................................................39 4-2 未來展望......................................................40 4-2-1 小尺寸奈米球陣列及其奈米結構的製備........................40 4-2-2 三維網絡狀奈米結構........................................40 參考文獻...........................................................42 表目錄.............................................................51 圖目錄.............................................................55

    [1] S. Ciraci and I. P. Batra, “Theory of The Quantum Size Effect in Simple
    Metals”,Phys. Rev. B 33 (1986) 4294-4297.
    [2] M. Rieth, “Nano-Engineering in Science and Technology:An Introduction to
    the World of Nano-Design”, 2003, World Scientific, Singapore.
    [3] G. Horneck, B. K. Christa, “Astrobiology: The Quest for the Conditions
    of Life, Part V Complexity and Life, Molecular Self-Assembly and the
    Origin of Life", 2001, Spriger press, 360-372.
    [4] G. M. Whitesides and B. Grzybowski, “Self-Assembly at All Scales”,
    Science 295 (2002) 2418-2421.
    [5] A. N. Shipway, E. Katz, and I. Willner, “Nanoparticle Arrays on Surfaces
    for Electronic, Optical and Sensoric Applications”, Chemphyschem 1(2000)
    18-52.
    [6] Y. Xia, B. Gates, Y. Yin, and Y. Lu, “Monodispersed Colloidal Spheres:
    Old Materials with New Applications”, Adv. Mater. 12 (2000) 693-713.
    [7] P. A. Kralchevsky and N. D. Denkov, “Capillary Forces and Structuring in
    Layers of Colloid Particles”, Curr. Opinion. Coll. Interf. Sci. 6(2001)
    383-401.
    [8] J. Dutta and H. Hofmann, “Self-Organization of Colloidal Nanoparticles”,
    Encyclopedia of Nanosci. and Nanotech. X (2003) 1–23.
    [9] F. Jarai-Szabo, S. Astilean and Z. Neda, “Understanding Self-Assembled
    Nanosphere Patterns”, Chem. Phys. Lett. 408 (2005) 241–246.
    [10] N. D. Denkov; O. D. Velev; P. A. Kralchevsky; I. B. Ivanov; H. Yoshimura;
    K.Nagayama, “Mechanism of Formation of Two-Dimensional Crystals from
    Latex Particles on Substrates”, Langmuir 8 (1992) 3183-3190.
    [11] P. A. Kralchevsky; V. N. Paunov; I. B. Ivanov; K. Nagayama, “Capillary
    Meniscus Interactions between Colloidal Particles Attached to a Liquid-
    Fluid Interface”, J. Colloid Interface Sci. 151 (1992) 79-94.
    [12] P. A. Kralchevsky; V. N. Paunov; N. D. Denkov; I. B. Ivanov; K. Nagayama,
    “Energetical and Force Approaches to the Capillary Interactions between
    Particles Attached to a Liquid-Fluid Interface” J. Colloid Interface
    Sci. 155 (1993) 420-437.
    [13] P. A. Kralchevsky; K. Nagayama, “Capillary Forces between Colloidal
    Particles”, Langmuir 10 (1994) 23-36.
    [14] K. Nagayama, “Two-dimensional Self-Assembly of Colloids in Thin Liquid
    Films”, Colloids Surf. A 109 (1996) 363-374.
    [15] J. E. Lennard-Jones, “Cohesion”, Proceedings of the Physical Society 43
    (1931) 461-482.
    [16] A. S. Dimitrov; K. Nagayama, "Steady-State Unidirectional Convective
    Assembling of Fine Particle into Two-Dimensional Arrays", Chem. Phys.
    Lett.243 (1995) 462-468.
    [17] A. S. Dimitrov and K. Nagayama, “Continuous Convective Assembling of Fine
    Particles into Two-Dimensional Arrays on Solid Surfaces“, Langmuir 12
    (1996)1303-1311.
    [18] E. Adachi, A. S. Dimitrov, and K. Nagayama, “Stripe Patterns Formed on a
    Glass Surface During Droplet Evaporation”, Langmuir 11 (1995) 1057-1060.
    [19] H. W. Deckman, J. H. Dunsmuir, “Natural Lithography", Appl. Phys. Lett.
    41 (1982) 377-379.
    [20] C. D. Dushkin, G. S. Lazarov, S. N. Kotsev, H. Yoshimura and K. Nagayama,
    “Effect of Growth Conditions on the Structure of Two-Dimensional Latex
    Crystals: Experiment”, Colloid. Polym. Sci. 277 (1999) 914-930.
    [21] R. Micheletto, H. Fukuda and M. Ohtsu, "A Simple Method for the Production
    of a Two-Dimensional, Ordered Array of Small Latex Particles", Langmuir 11
    (1995) 3333-3336.
    [22] W. Kerm, “Handbook of Semiconductor Wafer Cleaning Technology –Science,
    Technology, and Application”, 1993, Noyes Publications, New Jersey.
    [23] V. Ng, Y. V. Lee, B. T. Chen and A. O. Adeyeye, “Nanostructure Array
    Fabrication with Temperature-Controlled Self-Assembly Techniques”,
    Nanotechnology 13 (2002) 554–558.
    [24] M. Marquez and B. P. Grady, “The Use of Surface Tension to Predict the
    Formation of 2D Arrays of Latex Spheres Formed via the Langmuir-Blodgett- Like Technique”, Langmuir 20 (2004) 10998-11004.
    [25] Y. Kobayashi, H. Miyauchi, “Fabrication of Mono- and Multi-Layers of
    Submicro-Sized Spheres by a Dip-Coating Technique and Their Transmittance
    Property”, J. Chem. Eng. of Japan 37 (2004) 614-621.
    [26] J. Rybczynski, U. Ebels, and M. Giersig, “Large-Scale, 2D Arrays of
    Magnetic Nanoparticles”, Colloids Surf. Physicochem. Eng. Aspects 219
    (2003) 1-6.
    [27] J. C. Hulteen, R. P. van Duyne, "Nanosphere Lithography: A Materials
    General Fabrication Process for Periodic Particle Array Surfaces", J.
    Vac. Sci. Technol. A 13 (1995) 1553-1558.
    [28] D. Wang and H. Mohwald, “Rapid Fabrication of Binary Colloidal Crystals
    by stepwise Spin-Coating”, Adv. Mater. 16 (2004) 244-247.
    [29] F. Burmeister, C. Schäfle, T. Matthes, M. Böhmisch, J. Boneberg, and P.
    Leiderer, “Colloid Monolayers as Versatile Lithographic Masks”,
    Langmuir 13 (1997) 2983-2987.44
    [30] M. H. Kim, S. H. lm, O O. Park, “Rapid Fabrication of Two- and Three
    Dimensional Colloidal Crystal Films via Confined Convective Assembly”,
    Adv.Funct. Mater. 15 (2005) 1329-1335.
    [31] A. Winkleman, B. D. Gates, L. S. McCarty, and G. M. Whitesides, “Directed
    Self-Assembly of Spherical Particles on Patterned Electrodes by an Applied
    Electric Field”, Adv. Mater. 17 (2005) 1507-1511.
    [32] J. Aizenberg, P. V. Braun, and P. Wiltzius, “Patterned Colloidal
    Deposition Controlled by Electrostatic and Capillary Forces”, Phys. Rev.
    Lett. 84 (2000) 2997-3000.
    [33] C. Chen, Electron Beam Lithography for Nanoelectronics, 奈米設備與檢測研
    討會HTTP://NANO-TAIWAN.SINICA.EDU.TW/2003NANOCONFERENCES.ASP。
    [34] A. J. Haes, C. L. Haynes, R. P. Van Duyne, “Nanosphere Lithography:
    Self-Assembled Photonic and Magnetic Materials”, Mat. Res. Soc. Symp. 636
    (2001) D4.8.1-6.
    [35] M. Ratner and D. Ratner, “Nanotechnology: A Gentle Introduction to the
    Next Big Idea”, Chapter 4, 2003, Prentice Hall.
    [36] 廖明吉,"0.1 微米世代的微影解決方法", 奈米通訊,第五卷,第四期, 28-33.
    [37] E. Miyauchi, H. Arimoto, H. Kitada, “Ion Species and Energy Control of
    Finely Focused RBs for Maskless in Situ Microfabrication Processes”,
    Nucl. Instrum. Methods B39 (1989) 515-520.
    [38] J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen,
    and R. P. Van Duyne, “Nanosphere Lithography: Size-Tunable Silver
    Nanoparticle and Surface Cluster Arrays”, J. Phys. Chem. B 103 (1999)
    3854-3863.
    [39] C. L. Haynes, A. D. McFarland, M. T. Smith, J. C. Hulteen, and R. P. Van
    Duyne, “Angle-Resolved Nanosphere Lithography: Manipulation of
    Nanoparticle Size, Shape, and Interparticle Spacing “, J. Phys. Chem. B
    106 (2002) 1898-1902.
    [40] C. L. Haynes and R. P. Van Duyne, “Nanosphere Lithography: A Versatile
    Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics”,
    J.Phys. Chem. B 105 (2001) 5599-5611.
    [41] A. Kosiorek, W. Kandulski, P. Chudzinski. K. Kempa, M. Giersig, "Shadow
    Nanosphere. Lithography: Simulation and Experiment", Nano Lett. 4 (2004)
    1359-1363.
    [42] A. Kosiorek, W. Kandulski, H. Glaczynska, M. Giersig, ”Fabrication of
    Nanoscale Rings, Dots, and Rods by Combining Shadow Nanosphere
    Lithography and Annealed Polystyrene Nanosphere Masks”, Small 1 (2005)
    439-444.
    [43] L. Nan and Z. A. Martin, “Size-Tunable Ge Nano-Particle Arrays Patterned
    on Si Substrates with Nanosphere Lithography and Thermal Annealing“,
    Jpn. J. Appl. Phys. 41 (2002) 4626-4629.
    [44] B. J. Y. Tan, C. H. Sow, T. S. Koh, K. C. Chin, A. T. S. Wee, and C. K.
    Ong,“Fabrication of Size-Tunable Gold Nanoparticles Array with Nanosphere
    Lithography, Reactive Ion Etching, and Thermal Annealing”, J. Phys.
    Chem. B 109 (2005) 11100-11109.
    [45] Z. P. Huang and D. L. Carnahan, “Growth of Large Periodic Arrays of
    Carbon Nanotubes”, Appl. Phys. Lett. 82 (2003) 460-462.
    [46] K. Kempa, B. Kimball, J. Rybczynski, Z. P. Huang, P. F. Wu, D. Steeves, M.
    Sennett, M. Giersig, D. V. G. L. N. Rao, D. L. Carnahan, D. Z. Wang, J.
    Y. Lao, W. Z. Li, and Z. F. Ren., “Photonic Crystals Based on Periodic
    Arrays of Aligned Carbon Nanotubes”, Nano Lett. 3 (2003) 13-18.
    [47] Y. Wang, Y. Wang, J. Rybczynski, D. Z. Wang, K. Kempa, Z. F. Ren, W. Z.
    Li, and B. Kimball, “Periodicity and Alignment of Large-Scale Carbon
    Nanotubes Arrays”, Appl. Phys. Lett. 85 (2004) 4741-4743.
    [48] K. H. Park, S. Lee, K. H. Koh, R. L. KBK, T. W. Milne, “Advanced
    Nanosphere Lithography for the Areal-Density Variation of Periodic Arrays
    of Vertically Aligned Carbon Nanofibers”, J. Appl. Phys. 97 (2005)
    024311-024314.
    [49] X. Wang, C. J. Summers and Z. L. Wang, “Large-Scale Hexagonal-Patterned
    Growth of Aligned ZnO Nanorods for Nano-optoelectronics and Nanosensor
    Arrays”, Nano Lett. 4 (2004) 423-426.
    [50] J. Rybczynski, D. Banerjee, A. Kosiorek, M. Giersig, and Z. F. Ren,
    “Formation of Super Arrays of Periodic Nanoparticles and Aligned ZnO
    Nanorods − Simulation and Experiments”, Nano Lett. 4 (2004) 2037-2040.
    [51] D. Banerjee, J. Rybczynski, J. Y Huang, D. Z. Wang, K. Kempa, and Z. F.
    Ren,“Large Hexagonal Arrays of Aligned ZnO Nanorods”, Appl. Phys. A 80
    (2005) 749–752.
    [52] H. J. Fan, B. Fuhrmann, R. Scholz, F. Syrowatka, A. Dadgar, A. Krost, M.
    Zacharias, “Well-Ordered ZnO Nanowire Arrays on GaN Substrate Fabricated
    via. Nanosphere Lithography”, J. Crystal Growth 287 (2006) 34–38.
    [53] B. Fuhrmann, H. S. Leipner, and H. R. Höche, “Ordered Arrays of Silicon
    Nanowires Produced by Nanosphere Lithography and Molecular Beam
    Epitaxy”, Nano Lett. 5 (2005) 2524-2527.
    [54] J. Aizpurua, Garnett W. Bryant, P. Hanarp, D. S. Sutherland, M. Kall, F.
    J. G. de Abajo, “Tunable Optical Excitations in Gold Nanorings”, Phys.
    Rev. Lett. 90 (2003) 057401-1~4.46
    [55] X. D. Wang, E. Graugnard, J. S. King, Z. L. Wang, and C. J. Summers,
    “Large-Scale Fabrication of Ordered Nanobowl Arrays”, Nano Lett. 4 (2004)
    2223-2226.
    [56] X. D. Wang, C. Lao, E. Graugnard, C. J. Summers, and Z. L. Wang,
    “Large-Size Liftable Inverted-Nanobowl Sheets as Reusable Masks for
    Nanolithography”, Nano Lett. 5 (2005) 1784-1788.
    [57] A. V. Whitney, B. D. Myers, and R. P. Van Duyne, "Sub-100 nm Triangular
    Nanopores Fabricated with the Reactive Ion Etching Variant of Nanosphere
    Lithography and Angle-Resolved Nanosphere Lithography", Nano Lett. 4
    (2004) 1507-1511.
    [58] C. Haginoya, M. Ishibashi, and K. Koike, “Nanostructure Array Fabrication
    with a Size-Controllable Natural Lithography”, Appl. Phys. Lett. 71
    (1997) 2934-2936.
    [59] S. M. Weekes, F. Y. Ogrin, and W. A. Murray, “Fabrication of Large-Area
    Ferromagnetic Arrays Using Etched Nanosphere Lithography”, Langmuir 20
    (2004) 11208-11212.
    [60] P. Wu, L. Q. Peng; X. L. Tuo, X. G. Wang; J. Yuan, “Control of Deposition
    Channels in Nanosphere Templates for High-Density Nanodot Array
    Production”, Nanotechnology 16 (2005) 1693–1696.
    [61] D. G. Choi, H. K. Yu, S. G. Jang, and S. M. Yang, “Colloidal Lithographic
    Nanopatterning via Reactive Ion Etching”, J. Am. Chem. Soc. 126 (2004)
    7019-7025.
    [62] Y. B. Zhenga, S. J. Wang, A. C. H. Huan, and Y. H. Wang, “Fabrication of
    Tunable Nanostructure Arrays Using Ion-Polishing-Assisted Nanosphere
    Lithography”, J. Appl. Phys. 99 (2006) 034308-1~4.
    [63] C. L. Cheung, R. J. Nikolic, C. E. Reinhardt and T. F. Wang,
    “Fabrication of Nanopillars by Nanosphere Lithography”, Nanotechnology,
    17 (2006) 1339–1343.
    [64] K. Seeger and R. E. Palmer, “Fabrication of Ordered Arrays of Silicon
    Nanopillars”, J. Phys. D: Appl. Phys. 32 (1999) L129–L132.
    [65] A. Wellner, P. R. Preece, J. C. Fowler and R. E. Palmer, “Fabrication of
    Ordered Arrays of Silicon Nanopillars in Silicon-on-Insulator Wafers”,
    Microelectron. Eng. 57-58 (2001) 919–924.
    [66] M. Bale, A. J. Turner and R. E. Palmer, “Fabrication of Ordered Arrays of
    Silicon Nanopillars at Selected Sites”, J. Phys. D: Appl. Phys. 35 (2002)
    L11–L14.
    [67] C. W. Kuo, J. Y. Shiu, P. Chen, “Size and Shape Controlled Fabrication of
    Large-Area Periodic Nanopillar Arrays”, Chem. Mater. 15 (2003) 2917-2920.
    47
    [68] F. Sun, W. Cai, Y. Li, B. Q. Cao, Y. Cai and L. Zhang, “Morphology-
    Controlled Growth of Large Area Two Dimensional Ordered Pore Arrays”,
    Adv. Funct. Mater. 14 (2004) 283-288.
    [69] Y. Li, W. Cai, G. Duan, F. Sun, B. Cao, F. Lu,”2D Nanoparticle Arrays by
    Partial Dissolution of Ordered Pore Films”, Mater. Lett. 59 (2005) 276–
    279.
    [70] Y. Li; W. Cai; B Cao; G. Duan; and F. Sun, “Fabrication of the Periodic
    Nanopillar Arrays by Heat-Induced Deformation of 2D Polymer Colloidal
    Monolayer”, Polymer 46 (2005) 12033–12036.
    [71] F. Sun, W. Cai, Y. Li, L. Jia, and F. Lu, “Direct Growth of Mono- and
    Multilayer Nanostructured Porous Films on Curved Surfaces and Their
    Application as Gas Sensors”, Adv. Mater. 17 (2005) 2872–2877.
    [72] K. L. Wang, T. C. Holloway, R. F. Pinizzotto, Z. P. Sobczak, W. R.
    Hunter, and A. F. Tash, “Composite TiSi2/ n+poly-Si Low Resistivity Gate
    Electrode and Interconnect for VLSI Device Technology” ,IEEE Trans.
    Electron Device 29 (1982) 547-553.
    [73] K. Goto, “Leakage Mechanism and Optimized Conditions of Co Salicide
    Process for Deep-Submicron CMOS Devices”, IEDM (1995) 449-452.
    [74] F. D. Heurle, C. S. Petrsson, L. Slot, B. Strizker, “Diffusion in
    Intermetallic Compounds with the CaF2 Structure: A Marker Study of the
    Formation of NiSi2 Thin Film”, J. Appl. Phys. 53 (1982) 5678-5681.
    [75] L. J. Chen, J. W. Mayer, and K. N. Tu, "Formation and Structure of
    Epitaxial Silicides on Silicon", Thin Solid Films 93 (1982) 135-141.
    [76] S. P. Maruarka, “Silicide for VLSI Applications”, 1983, Academic Press,
    New York.
    [77] R. Nath and M. Yeadon, “Direct Observations of the Mechanism of Nickel
    Silicide Formation on Si(100) and Si0.75Ge0.25 Substrates”, Electrochem.
    Solid-State Lett. 7 (2004) G231-G234.
    [78] J. Y. Yew and L. J. Chen, “Epitaxial Growth of NiSi2 on (111) Si Inside
    0.1–0.6 mm Oxide Openings Prepared by Electron Beam Lithography”, Appl.
    Phys. Lett. 69 (1996) 999-1001.
    [79] I. J. van Gurp and C. Langereis, “Cobalt Silicide Layer on Si Structure
    and Growth”, J. Appl. Phys. 46 (1975) 4301-4307.
    [80] T. Ohguro, ”0.25 μm CoSi2 Salicide CMOS Technology Thermally Stable up to
    1000℃ with High TDDB Reliability”, Symp. VLSI Technol. 1997 101-102.
    [81] C. Detavernier, R. L. Van Meirhaeghe, F. Cardon, and K. Maex, “CoSi
    Formation Through SiO2”, Thin Solid Films 386 (2001) 19-26.
    [82] K. Goto, A. Fushida, J. Watanabe, T. Sukegawa, K. Kawamura, T. Yamazaki,
    and T. Sugii, “Leakage Mechanism and Optimized Conditions of Co Salicide
    Process for Deep Submicron CMOS Devices”, IEDM Tech. Dig. 1995 906–909.
    [83] H. F. Hsu, L. J. Chen, and J. J. Chu, “Epitaxial Growth of CoSi on (111)
    Si Inside Miniature-Size Oxide by Rapid Thermal Annealing”, J. Appl.
    Phys. 69 (1991) 4282-4285.
    [84] J. Y. Yew, L. J. Chena, and W. F. Wu, “Effects of Lateral Confinement on
    the Growth of CoSi and CoSi2 on (001)Si Inside 0.2±2 μm Oxide Openings
    Prepared by Electron Beam Lithography”, Mater. Chem. Phys. 61 (1999) 42-
    45.
    [85] I. Y. Hwang, J. H. Kim, S. K. Oh, H. J. Kang and Y. S. Lee,” Ultrathin
    Cobalt Silicide Film Formation on Si(100)”, Surf. Interface Anal. 35
    (2003) 184–187.
    [86] R. Beyers, and R. Sinclair, “Metastable Phase Formation in Titanium-
    Silicon Thin Films”, J. Appl. Phy. 57 (1985) 5240-5245.
    [87] T. Ohguro, S. I. Nakamura, M. Koike, T. Morimoto, A. Nishiyama,Y. Ushiku,
    T. Yoshitomi, M. Ono, M. Saito, and H. Iwai,, “Analysis of Resistance
    Behavior in Ti and Ni-Salicided Polysilicon Films”, IEEE Trans. Electron
    Devices ED-41 (1994) 2305-2317.
    [88] T. Yasuda, S. Yamasaki, S. Gwo, ”Nanoscale Selective-Area Epitaxial
    Growth of Si Using an Ultrathin SiO2/Si3N4 Mask Patterned by an Atomic
    Force Microscope”, Appl. Phys.Lett. 77 (2000) 3917-3919.
    [89] J. I. Martin, J. Nogues, K. Liu, J. L. Vicent, I. K. Schuller,“Ordered
    Magnetic Nanostructures: Fabrication and Properties”, J. Magn. Magn.
    Mater. 256 (2003) 449-501.
    [90] M. Winzer, M. Kleiber, N. Dix, R. Wiesendanger, “Fabrication of Nano-Dot
    and Nano-Ring-Arrays by Nanosphere Lithography”, Appl. Phys. A 63 (1996)
    617–619.
    [91] J. Boneberg, F. Burmeister, C. Scha¨fle, and P. Leiderer, “The Formation
    of Nano-Dot and Nano-Ring Structures in Colloidal Monolayer Lithography”,
    Langmuir 13 (1997) 7080-7084.
    [92] D. Jia and A. Goonewardene, “Two-Dimensional Nanotriangle and Nanoring
    Arrays on Silicon Wafer”, Appl. Phys. Lett. 88 (2006) 053105-1~3.
    [93] D. P. Yu, Y. J. Xing, Q. L. Hang, H. F. Yan, J. Xu, Z. H. Xi, S. Q. Feng,
    “Controlled Growth of Oriented Amorphous Silicon Nanowires via a
    Solid-Liquid-Solid (SLS) Mechanism”, Physica E 9 (2001) 305-309.
    [94] H. F. Yan, Y. J. Xing, Q. L. Hang, D. P. Yu, Y. P. Wang, J. Xu, Z. H. Xi,
    S. Q. Feng, “Growth of Amorphous Silicon Nanowires via a Solid–Liquid–
    Solid Mechanism”, Chem. Phys. Lett. 323 (2000) 224-228.
    [95] The National Technology Roadmap for Semiconductors, Semiconductor
    Industry Association 1997 109-110.
    [96] M. Sambasivam; A. Klein; L. H. Sperling, T. Provder; M. Winnik; M. Urban;
    49“In Film Formation in Waterborne Coatings”; ACS Symposium Series 648
    1996.
    [97] A. S. Dimitrov, T. Miwa, and K. Nagayama, “A Comparison between the
    Optical Properties of Amorphous and Crystalline Monolayers of Silica
    Particles”, Langmuir 15 (1999) 5257 -5264.
    [98] P. Eaton, J. R. Smith, P. Graham, J. D. Smart, T. G. Nevell, and J.
    Tsibouklis,“Adhesion Force Mapping of Polymer Surfaces:Factors
    Influencing Force of Adhesion”, Langmuir 18 (2002) 3387-3389.
    [99] O. D. Velev; A. M. Lenhoff, “Colloidal Crystals as Templates for Porous
    Materials”, Curr. Opin. Colloid Interface Sci. 5 (2000) 56-63.
    [100] S. H. Park and Y. Xia, “Fabrication of Three-Dimensional Macroporous
    Membranes with Assemblies of Microspheres as Templates”, Chem. Mater. 10
    (1998) 1745-1747.
    [101] P. Jiang, J. F. Bertone, K. S. Hwang, and V. L. Colvin, “Single-Crystal
    Colloidal Multilayers of Controlled Thickness”, Chem. Mater. 11 (1999)
    2132-2140.
    [102] S. H. lm, Y. TaikLim, D. J. Suh, and O O. Park, “Three-Dimensional
    Self-Assembly of Colloids at a Water-Air Interface: A Novel Technique for
    the Fabrication of Photonic Bandgap Crystals”, Adv. Mater. 14 (2002)
    1367-1369.
    [103] O. D. Velev; T. A. Jede; R. F. Lobo; A. M. Lenhoff, "Microstructured
    Porous Silica via Colloidal Crystallization", Nature 389 (1997) 447-448.
    [104] B. T. Holland, C. F. Blanford, A. Stein, “Synthesis of Macroporous
    Minerals with Highly Ordered Three-Dimensional Arrays of Spheroidal
    Voids”, Science 281 (1998) 538-540.
    [105] D. M. Kuncicky, S. D. Christesen, and O. D. Velev, “Role of the Micro-
    and Nanostructure in the Performance of Surface-Enhanced Raman Scattering
    Substrates Assembled from Gold Nanoparticles”, Appl. Spectro. 59 (2005)
    401-409.
    [106] Y. A. Vlasov, N. Yao, D. J. Norris, “Synthesis of Photonic Crystals for
    Optical Wavelengths from Semiconductor Quantum Dots”, Adv. Mater. 11
    (1999) 165-169.
    [107] S. M. Yang, N. Coombs, and G. A. Ozin, “Micromolding in Inverted Polymer
    Opals (MIPO): Synthesis of Hexagonal Mesoporous Silica Opals”, Adv.
    Mater. 12 (2000) 1940-1944.
    [108] P. Jiang, J. F. Bertone, V. L. Colvin, “A Lost-Wax Approach to
    Monodisperse Colloids and Their Crystals”, Science 291 (2001) 453-547.
    [109] S. Maenosono, C. D. Dushkin, S. Saita, and Y. Yamaguchi, “Growth of a
    Semiconductor Nanoparticle Ring during the Drying of a Suspension
    Droplet”,Langmuir 15 (1999) 957-965.
    [110] Karen Maex, “Silicides for Integrated Circuits: TiSi2 and CoSi2”,
    Mater. Sci. Eng. R11 (1993) 53-153.

    QR CODE
    :::