| 研究生: |
黃柏翔 Bo-siang Huang |
|---|---|
| 論文名稱: |
生長多晶矽之熱流場與雜質傳輸控制數值分析 Investigation of thermal-fluid and impurity concentration distributions for growing multicrystalline Silicon |
| 指導教授: |
陳志臣
Jyh-Chen Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 數值模擬 、多晶矽 、導流裝置 |
| 外文關鍵詞: | multicrystalline silicon (mc-Si), numerical simulation, gas guidance device |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
直接固化法(DS)生長多晶矽常被用於光電產業。多晶矽太陽能電池的品質與晶碇內的雜質濃度有高度的相關性。在本研究中,採用數值模擬多晶矽固化生長之暫態熱流場生長過程,來探討導流板的安裝位置在固化過程對氧濃度與碳濃度的影響。導流板裝置會影響氣體與熔湯的流動型態,並且影響熔湯內氧雜質與碳雜質的分佈情形。晶碇固化時隨著固化分率增加,熔湯與坩堝接觸面積減少,使熔湯內氧濃度降低。結果顯示將導流板裝置到自由液面的距離降低導可減少熔湯內氧濃度但卻增加熔湯內碳濃度。導流板高度分別為2.7cm、5.5cm、8.3cm、11cm、13.8cm。晶碇內氧濃度於導流板高度2.7cm時會有最低的氧濃度結果,與導流板高度13.8cm相比可降低氧濃度約30%。晶碇內碳濃度隨著導流板高度降低而逐漸降低,但當導流板高度從5.5cm降低到2.7cm後,晶碇內碳濃度反而增加。因此,導流板的最佳安裝高度為5.5cm,可得到降低晶碇內氧雜質與碳雜質的結果。
Directional solidification (DS) method is frequently used to produce the mc-Si ingots in the PV wafer industrial. The efficiency of an mc-Si solar cell depends strongly on the impurity content and level of the mc-Si wafers. In this study, numerical simulation of the transient temperature, velocity and concentration of oxygen and carbon and silicon carbide has been carried out in order to clarify the influence of gas shield on impurity transport of oxygen, carbon and silicon carbide in a directional solidification system furnace during the growth process. The installation of such a gas flow guidance device changes the gas and melt flow pattern in the furnace, which would affect the transport of carbon oxide and silicon oxide in the gas and oxygen and carbon in the melt. As the solidification fraction enlarges, the oxygen concentration in the melt decreases, because of the reduction in the amount of crucible surface immersed below the silicon melt. Results show that a decrease of the relative position of gas shield and gas-melt interface reduces the oxygen concentration in the melt but enlarges the carbon impurity. The distance between gas guidance device and free surface are presented using 2.7cm, 5.5cm, 8.3cm, 11cm, 13.8cm. The distance with 2.7cm can reduce oxygen concentration about 30% and show the minimum oxygen concentration in the ingot. Carbon concentration decreases with reducing height in the ingot, but carbon concentration increases when the height of gas shield changes from 5.5cm to 2.7cm. Thus, the optimum position to install the gas flow guidance device for obtaining the best carbon and oxygen levels in the ingot during the solidification process is 5.5cm.
[1] S. Hisamatsu, H. Matsuo, S. Nakano, K. Kakimoto, "Numerical analysis of the formation of Si3N4 and Si2N2O during a directional solidification process in multicrystalline silicon for solar cells" , Journal of Crystal Growth, Vol. 311, pp. 2615-2620, 2009
[2] H. Matsuo, R.B. Ganesh, S. Nakano, L. Liu, K. Arafune, M.Y. Yoshio Ohshita, Koichi Kakimoto, "Effect of crucible rotation on oxygen concentration during unidirectional solidification process of multicrystalline silicon for solar cells", Journal of Crystal Growth, Vol. 311, pp. 1123-1128, 2009
[3] L. Liu, S. Nakano, K. Kakimoto, "Carbon concentration and particle precipitation during directional solidification of multicrystalline silicon for solar cells", Journal of Crystal Growth, Vol. 310, pp. 2192-2197, 2008
[4] H. Matsuo, R. Bairavaganesh, S. Nakano, L. Liu, Y. Kangawa, K. Arafune, Y. Ohshita, M. Yamaguchi, K. Kakimoto, "Thermodynamical analysis of oxygen incorporation from a quartz crucible during solidification of multicrystalline silicon for solar cell", Journal of Crystal Growth, Vol. 310, pp. 4666-4671, 2008
[5] D. Vizman, J. Friedrich, G. Mueller, "3D time-dependent numerical study of the influence of the melt flow on the interface shape in a silicon ingot casting process", Journal of Crystal Growth, Vol. 303, pp. 231-235, 2007
[6] A. Istratov, T. Buonassisi, M. Pickett, M. Heuer, E. Weber, "Control of metal impurities in “dirty” multicrystalline silicon for solar cells", Materials Science and Engineering: B, Vol. 134, pp. 282-286, 2006
[7] T. Saitoh, X. Wang, H. Hashigami, T. Abe, T. Igarashi, S. Glunz, S. Rein, W. Wettling, I. Yamasaki, H. Sawai, H. Ohtuka, T. Warabisako, "Suppression of light degradation of carrier lifetimes in low-resistivity CZ–Si solar cells", Solar Energy Materials and Solar Cells, Vol. 65 pp. 277-285, 2001
[8] D. Yang, L. Li, X. Ma, R. Fan, D. Que, H.J. Moeller, "Oxygen-related centers in multicrystalline silicon", Solar Energy Materials and Solar Cells, Vol. 62, pp. 37-42, 2000
[9] Z. Xi, J. Tang, H. Deng, D. Yang, D. Que, "A model for distribution of oxygen in multicrystalline silicon ingot grown by directional solidification", Solar Energy Materials and Solar Cells, Vol. 91, pp. 1688-1691, 2007
[10] B. Gao, S. Nakano, K. Kakimoto, "Global Simulation of Coupled Carbon and Oxygen Transport in a Unidirectional Solidification Furnace for Solar Cells", Journal of The Electrochemical Society, Vol. 157, pp. H153-159, 2010
[11] H. Matsuo, R. Bairavaganesh, S. Nakano, L. Liu, K. Arafune, Y. Ohshita, M. Yamaguchi, K. Kakimoto, "Analysis of oxygen incorporation in unidirectionally solidified multicrystalline silicon for solar cells", Journal of Crystal Growth, Vol. 310, pp. 2204-2208, 2008
[12] R. Kvande, L. Arnberg, C. Martin, "Influence of crucible and coating quality on the properties of multicrystalline silicon for solar cells", Journal of Crystal Growth, Vol. 311 pp. 765-768, 2009
[13] B. Wu, N. Stoddard, R. Ma, R. Clark, "Bulk multicrystalline silicon growth for photovoltaic (PV) application", Journal of Crystal Growth, Vol. 310, pp. 2178-2184, 2008
[14] A. Kuliev, N. Durnev, V. Kalaev, "Analysis of 3D unsteady melt flow and crystallization front geometry during a casting process for silicon solar cells", Journal of Crystal Growth, Vol. 303, pp. 236-240, 2007
[15] H. Miyazawa, L. Liu, S. Hisamatsu, K. Kakimoto, "Numerical analysis of the influence of tilt of crucibles on interface shape and fields of temperature and velocity in the unidirectional solidification process", Journal of Crystal Growth, Vol. 310, pp. 1034-1039, 2008
[16] Y. Delannoy, F. Barvinschi, T. Duffar, "3D dynamic mesh numerical model for multi-crystalline silicon furnaces", Journal of Crystal Growth, Vol. 303, pp. 170-174, 2007
[17] B. Gao, X.J. Chen, S. Nakano, K. Kakimoto, "Crystal growth of high-purity multicrystalline silicon using a unidirectional solidification furnace for solar cells", Journal of Crystal Growth, Vol. 312, pp. 1572-1576, 2010
[18] F. Schmid, C.P. Khattak, J. T.G. Digges, L. Kaufman, "Origin of SiC Impurities in Silicon Crystals Grown from the Melt in Vacuum", Journal of Electrochemical Society, Vol. 126, pp. 935-938, 1979
[19] B. Gao, S. Nakano, K. Kakimoto, "Effect of crucible cover material on impurities of multicrystalline silicon in a unidirectional solidification furnace", Journal of Crystal Growth, Vol. 318, pp. 255-258, 2011
[20] C. Reimann, M. Trempa, J. Friedrich, G. Muller, "About the formation and avoidance of C and N related precipitates during directional solidification of multi-crystalline silicon from contaminated feedstock", Journal of Crystal Growth, Vol. 312, pp. 1510-1516, 2010
[21] C. Reimann, M. Trempa, T. Jung, J. Friedrich, G. Muller, "Modeling of incorporation of O, N, C and formation of related precipitates during directional solidification of silicon under consideration of variable processing parameters", Journal of Crystal Growth, Vol. 312, pp. 878-885, 2010
[22] M. Trempa, C. Reimann, J. Friedrich, G. Muller, "The influence of growth rate on the formation and avoidance of C and N related precipitates during directional solidification of multi crystalline silicon", Journal of Crystal Growth, Vol. 312, pp. 1517-1524, 2010
[23] L. Zheng, X. Ma, D. Hu, H. Zhang, T. Zhang, Y. Wan, "Mechanism and modeling of silicon carbide formation and engulfment in industrial silicon directional solidification growth", Journal of Crystal Growth, Vol. 318, pp. 313-317, 2011
[24] T. Carlberg, T.B. King, A.F. Witt, "Dynamic oxygen equilibrium in silicon melts during crystal growth by the czochralski technique", Journal of Electrochemical Society, Vol. 129, pp. 189-193, 1982
[25] Y.-Y. Teng, J.-C. Chen, C.-W. Lu, H.-I. Chen, C. Hsu, C.-Y. Chen, "Effects of the furnace pressure on oxygen and silicon oxide distributions during the growth of multicrystalline silicon ingots by the directional solidification process", Journal of Crystal Growth, Vol. 318, pp. 224-229, 2011
[26] Y.-Y. Teng, J.-C. Chen, C.-W. Lu, C.-Y. Chen, "The carbon distribution in multicrystalline silicon ingots grown using the directional solidification process", Journal of Crystal Growth, Vol. 312, 1282-1290, 2010
[27] V.V. Kalaev, I.Y. Evstratova, Y.N. Makarov, "Gas flow effect on global heat transport and melt convection in Czochralski silicon growth", Journal of Crystal Growth, Vol. 249, pp. 87-99, 2003
[28] V.V. Kalaev, "Calculation of bulk defects in CZ Si growth: impact of melt turbulent fluctuations", Journal of Crystal Growth, Vol. 250, pp. 203-208, 2003
[29] A.B. Dhia, E. Duclairoir, G. Legendre, J. Mercier, "Time-harmonic acoustic propagation in the presence of a shear flow", Journal of Computational and Applied Mathematics, Vol. 204, pp. 428-439, 2007
[30] B. Debusschere, "Turbulent scalar transport mechanisms in plane channel and Couette flows", International Journal of Heat and Mass Transfer, Vol. 47, pp. 1771-1781, 2004
[31] J. Bell, "Adaptive low Mach number simulations of nuclear flame microphysics", Journal of Computational Physics, Vol. 195, pp. 677-694, 2004
[32] R. Klein, "Semi-implicit extension of a godunov-type scheme based on low mach number asymptotics I One-dimensional flow", Journal of Computational Physics, Vol. 121, pp. 213-237, 1995
[33] R.J. Riley, G.P. Neitzel, "Instability of thermocapillary–buoyancy convection in shallow layers. Part 1. Characterization of steady and oscillatory instabilities", Journal of Fluid Mechanics, Vol. 359, pp. 143-164, 1998
[34] A. Raufeisen, M. Breuer, T. Botsch, A. Delgado, "DNS of rotating buoyancy– and surface tension–driven flow", International Journal of Heat and Mass Transfer, Vol. 51, pp. 6219-6234, 2008
[35] M. Wolfshtein, "The velocity and temperature distribution in one-dimensional flow with turbulence augmentation and pressure gradient", International Journal of Heat and Mass Transfer, Vol. 12 , pp. 301, 1969
[36] A.D. Smirnov, V.V. Kalaev, "Analysis of impurity transport and deposition processes on the furnace elements during Cz silicon growth", Journal of Crystal Growth, Vol. 311, pp. 829-832, 2009
[37] A. Smirnov, V.V. Kalaev, "Development of oxygen transport model in Czochralski growth of silicon crystals", Journal of Crystal Growth, Vol. 310, pp. 2970-2976, 2008
[38] R.I. Scace, G.A. Slack, "Solubility of Carbon in silicon and Germanium", Journal of Chemical Physics, Vol. 30, pp. 1551-1555, 1959
[39] 鄧應揚, "太陽能多晶矽晶錠固化生長之熱流場與雜質傳輸研究", 中央大學, 博士論文, 2011
[40] T. Carlberg, "A quantitative model for carbon incorporation in Czochralski silicon melts", Journal of Electrochemical Society, Vol. 130, pp. 168-171, 1983