| 研究生: |
胡浩鈞 Eric Haujuan Hu |
|---|---|
| 論文名稱: |
平行血流模擬使用非牛頓模型的數值研究 A Numerical Study on Parallel Hemodynamics Simulation Using Non-Newtonian Model |
| 指導教授: |
黃楓南
Feng-Nan Hwang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系 Department of Mathematics |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 44 |
| 中文關鍵詞: | 血流模擬 、非牛頓流體 、數值方法 |
| 外文關鍵詞: | Hemodynamics simulation, non-Newtonian fluid, Numerical Method |
| 相關次數: | 點閱:6 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
模擬血液在血管裡的行為有助於醫療人員或研究學者對心血管疾病掌握相關資訊,並降低手術的風險以及協助手術計畫。此篇論文中,我們使用Carreau-Yasuda模型模擬非牛頓流體以及牛頓流體在三維的血流模擬問題,包括long straight artery problem、end-to-side anastomosis probelm,以及針對個別病患所造出的pulmonary
artery probelm。在離散化方面,對於空間上的離散使用stabilized finite element method,而時間上的離散則使用implicit backward Euler finite difference method,於每一離散時間點,我們採用Newton-Krylov-Schwarz algorithm 解非線性系統。此篇
論文我們藉由比較以兩種不同流體為基礎的血流模擬,進而證實非牛頓流體在血流模擬的重要性,更決定了在複雜血管模型之下,非牛頓流體為不可或缺的條件。
Numerical simulation of blood flow in the arteries becomes an invaluable tools to help both of the physicians to plan the surgery procedure to reduce the risk of surgery and the researchers to understand the cardiovascular diseases. To ease the numerical difficulties of blood flow simulation, blood is often assumed to be Newtonian fluid as the first approximation. However, the shear thinning effect is significant in large arteries due to the dramatic change of the shear stress during a cardiac cycle and the non-homogeneous
properties of blood. Moreover, the recirculation happens frequently in the low shear rate region. To compute accurately the wall shear stress that provides more useful information to predict the formation of intimal hyperplasia, it is necessary to take the rheological
effect of blood flows in to account. In this study, the non-Newtonian blood flows in different complexity of artery were numerically investigated by using 3D fully parallel incompressible fluid solver. Our fluid solver is developed based on generalized Newtonian fluid model, where the viscosity is the function of rate of strain tensor. More specifically, the more commonly-used model for blood flow simulation, the Carreau-Yasuda model,
compared with Newtonian model are reported, including the investigation how the wall shear stress distribution and the streamlines and pressure distribution depend on different physiological conditions and arterial geometries.
[1] F. Loth. Velocity and wall shear measurements inside a vascular graft model under
steady and pulsatile flow conditions. 1993.
[2] G. B. Thurston. Viscoelasticity of human blood. Biophysical journal, 12(9):1205–
1217, 1972.
[3] Hughes T. J. Taylor, C. A. and C. K. Zarins. Finite element modeling of blood flow
in arteries. Computer Mrthods in Applied Mechanics and Engineering, 158(1):155–
196, 1998.
[4] J. Kwack and A. Masud. A stabilized mixed finite element method for shear-rate
dependent non-newtonian fluids: 3d benchmark problems and application to blood
flow in bifurcating arteries. Computational Mechanics, 53(4):751–776, 2014.
[5] Johnston P. R. Corney S. Johnston, B. M. and D. Kilpatrick. Non-newtonian blood
flow in human right coronary arteries: steady state simulations. Journal of Biome-
chanics, 37(5):709–720, 2004.
[6] E. W. Merrill. Rheology of blood. Physiol. Rev, 49(4):863–888, 1969.
[7] Y. I. Cho and K. R. Kensey. Effects of the non-newtonian viscosity of blood on flows
in a diseased arterial vessel. part 1: Steady flows. Biorheology, 28(3-4):241–262,
1990.
[8] D. A. Steinman Ballyk, P. D. and C. R. Ethier. Simulation of non-newtonian blood
flow in an end-to-side anastomosis. Biorheology, 31(5):565–586, 1993.
[9] F. J. Walburn and D. J. Schneck. A constitutive equation for whole human blood.
Biorheology, 13(3):201–210, 1976.
[10] Y. C. Fung. Biomechanics: Mechanical Properties of Living Tissues. Springer,
1993.
[11] Johnston P. R. Corney S. Johnston, B. M. and D. Kilpatrick. Non-newtonian blood
flow in human right coronary arteries: transient simulations. Journal of Biomechan-
ics, 39(6):1116–1128, 2006.
[12] Shirani E. Razavi, A. and M. R. Sadeghi. Numerical simulation of blood pulsatile
flow in a stenosed carotid artery using different rheological models. Journal of
Biomechanics, 44(11):2021–2030, 2011.
[13] Lu X. Y. Chen, J. and W. Wang. Non-newtonian effects of blood flow on hemody-
namics in distal vascular graft anastomoses. Journal of Biomechanics, 39(11):1983–
1995, 2006.
[14] B. Liu and D. Tang. Influence of non-newtonian properties of blood on the wall
shear stress in human atherosclerotic right coronary arteries. Molecular & Cellular
Biomechanics: MCB, 8(1):73, 2011.
[15] VandeVord P. J. Kim, Y. H. and J. S. Lee. Multiphase non-newtonian effects on
pulsatile hemodynamics in a coronary artery. International Journal for Numerical
Methods in Fluids, 58(7):803–825, 2008.
[16] Van de Vosse F. N. Gijsen, F. J. H. and J. D. Janssen. The influence of the nonnewtonian
properties of blood on the flow in large arteries: steady flow in a carotid
bifurcation model. Journal of Biomechanics, 32(6):601–608, 1999.
[17] Vishnoi R. Srivastava, V. P. and P. Sinha. Response of a composite stenosis to nonnewtonian
blood in arteries. 2015.
[18] Van de Vosse F. N. Gijsen, F. J. H. and J. D. Janssen. Wall shear stress in backwardfacing
step flow of a red blood cell suspension. Biorheology, 35(4):263–279, 1998.
[19] Hatami J. Hatami, M. and D. D. Ganji. Computer simulation of mhd blood conveying
gold nanoparticles as a third grade non-newtonian nanofluid in a hollow porous
vessel. Computer Methods and Programs in Biomedicine, 113(2):632–641, 2014.
[20] Rahman S. U. Gulzar M. M. Nadeem S. Ellahi, R. and K. Vafai. A mathematical
study of non-newtonian micropolar fluid in arterial blood flow through composite
stenosis. Appl. Math, 8(4):1567–1573, 2014.
[21] Y. Wu and X. C. Cai. A fully implicit domain decomposition based ale framework
for three-dimensional fluid–structure interaction with application in blood flow computation.
Journal of Computational Physics, 258:524–537, 2014.
[22] Bracco A. Kim G. E. Imparato, A. M. and R. Zeff. Intimal and neointimal fibrous
proliferation causing failure of arterial reconstructions. Surgery, 72(6):1007–1017,
1972.
[23] D. N. Ku. Blood flow in arteries. Annual Review of Fluid Mechanics, 29(1):399–
434, 1997.
[24] L. P. Franca and S. L. Frey. Stabilized finite element methods: Ii. the incompressible
navier-stokes equations. Computer Methods in Applied Mechanics and Engineering,
99(2):209–233, 1992.
[25] J. E. Dennis Jr and R. B. Schnabel. Numerical methods for unconstrained optimization
and nonlinear equations, volume 16. Siam, 1996.
[26] Y. Saad and M. H. Schultz. Gmres: A generalized minimal residual algorithm for
solving nonsymmetric linear systems. SIAM Journal on Scientific and Statistical
Computing, 7(3):856–869, 1986.
[27] A. Klawonn and L. F. Pavarino. Overlapping schwarz methods for mixed linear
elasticity and stokes problems. Computer Methods in Applied Mechanics and Engineering,
165(1):233–245, 1998.
[28] Rittgers S. E. Keynton, R. S. and M. C. S. Shu. The effect of angle and flow rate
upon hemodynamics in distal vascular graft anastomoses: an in vitro model study.
Journal of Biomechanical Engineering, 113(4):458–463, 1991.
[29] Fischer P. F. Loth, F. and H. S. Bassiouny. Blood flow in end-to-side anastomosis.
Annual Review of Fluid Mechanics, 40(1):367–393, 2008.