跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李權哲
Chuan-Tse Lee
論文名稱: 利用變壓吸附法回收及濃縮二氧化硫、二氧化氮與二氧化碳
Simulation of recovery and purity SO2,NO2 and CO2 by using pressure swing adsorption
指導教授: 周正堂
Cheng-tung Chou
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
畢業學年度: 92
語文別: 中文
論文頁數: 124
中文關鍵詞: 真空變壓吸附溫室效應酸雨現象二氧化碳二氧化硫模擬
外文關鍵詞: simulation, sulfur dioxide, greenhouse effect, vacuum swing adsorption, carbon dioxide, acid-rain phenomena
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 火力發電廠所排放出含硫量過高之氣體是造成酸雨現象的主要原因,另外排放大量的二氧化碳是造成全球溫室效應的主要原因。使用變壓吸附法濃縮及回收煙道氣中二氧化硫、二氧化氮及二氧化碳,使之再利用,為解決問題方法之一。近來這方面的研究已成為處理這類工廠廢氣之首要。
    本研究主要利用模擬方式,採用兩階段三塔六步驟真空變壓吸附程序,處理進料為0.5﹪SO2、0.13﹪NO2、18﹪CO2,其餘為N2之煙道氣,第一階段SO2-VSA (vacuum swing adsorption) 程序吸附劑採用Doewx MWA-1處理二氧化硫與二氧化氮,第二階段CO2-VSA程序吸附劑採用13X沸石處理二氧化碳。模擬時所用的氣體分離機構為平衡模式,假設吸附塔內的同一截面積上固、氣兩相瞬間達成平衡,且為非恆溫之變壓吸附模式,因吸附劑顆粒大,故可忽略吸附塔內壓力降。
    此一新程序可將濃度為0.5﹪SO2濃縮至6.31%,回收率達90%;0.13﹪NO2濃縮至0.96%,回收率達52%;18﹪CO2濃縮至73%,回收率達86%;本研究並探討各操作參數(諸如:各個步驟操作時間、進料壓力、脫附壓力與沖洗比等)對程序效能的影響。


    The major cause for acid-rain phenomena is the emission of SO2 from power plants that burn fossil flues, and the major cause for greenhouse effect is the emission of CO2 from power plants. It is important to recover and concentrate SO2, NO2 and CO2 from flue gas in solving those problems. Pressure swing adsorption is a feasible process in treating such problems.
    This study uses a two-stage vacuum swing adsorption process, with each stage composed of a three-bed six-step operation. Simulation is performed for the bulk separation of SO2/NO2/CO2/N2 (0.5/0.13/18/81.37 vol %) system. The first stage of SO2-VSA (vacuum swing adsorption) utilizes Dowex MWA-1 as adsorbent, and the second stage of CO2-VSA utilizes 13X zeolite as adsorbent. This study uses the equilibrium model and the pressure drop can be neglected. We assumed instantaneous equilibrium between the solid and gas phase with non-isothermal operation.
    The 0.5%SO2 in the feed can be concentrated to 6.31% in the product with a recovery of 90%, the 0.13%NO2 in the feed can be concentrated to 0.96% in the product with a recovery of 52%, and the 18%CO2 in the feed can be concentrated to 73% in the product with a recovery of 86%. The effects of operating variables such as P/F ratio, adsorption pressure, desorption pressure, and steps time are investigated on the performance of this study.

    目 錄 目錄 Ⅰ 表目錄 Ⅳ 圖目錄 Ⅵ 第一章 緒論 1 第二章 簡介及文獻回顧 3 2.1 變壓吸附之簡介 3 2.1.1 變壓吸附基本原理 3 2.1.2吸附劑及其選擇性 5 2.1.3 變壓吸附典型步驟 6 2.2 文獻回顧 8 2.2.1 PSA程序之發展與改進 8 2.2.2 理論之回顧 11 2.2.3 PSA製程在回收氣體污染物的應用 13 第三章 理論 16 3.1 基本假設 17 3.2 統制方程式 18 3.3 吸附平衡關係式 22 3.3.1 第一階段SO2-VSA吸附平衡關係式……………..22 3.3.2 第二階段CO2-VSA吸附平衡關係式……..……..29 3.4 參數推導 36 3.4.1 軸向擴散係數 36 3.4.2 管壁的熱傳係數 37 3.5 起始條件與邊界條件 38 3.6 求解的方法 39 3.6.1 閥公式 39 3.6.2 求解步驟 40 第四章 製程描述 42 4.1 程式驗證 45 4.2.1 第一階段SO2-VSA之三塔六步驟製程 46 4.2.2 第一階段SO2-VSA之常數與操作條件……...…..50 4.3.1 第二階段CO2-VSA之三塔六步驟製程……………56 4.3.2 第二階段CO2-VSA之常數與操作條件……...…..60 第五章 結果討論與數據分析 65 5.1 模擬結果與驗證 65 5.2 第一階段SO2-VSA三塔六步驟程序之模擬 68 5.2.1沖洗比對SO2-VSA的影響 68 5.2.2脫附壓力對SO2-VSA的影響 73 5.2.3 T1時間對SO2-VSA的影響 78 5.2.4 T2時間對SO2-VSA的影響 83 5.3 第二階段CO2-VSA三塔六步驟程序之模擬 89 5.3.1沖洗比對CO2-VSA的影響 89 5.3.2進料壓力對CO2-VSA的影響 93 5.3.3 脫附壓力對CO2-VSA的影響 96 5.3.4 T1時間對CO2-VSA的影響 99 5.3.5 T2時間對CO2-VSA的影響 102 5.4 結論 106 符號說明 109 參考文獻 111 附錄A 流速之估算方法 119 附錄B 環保法規 123 表目錄 表4.1 SO2-VSA吸附塔與吸附劑特性 51 表4.2氣體熱容量及Dowex MWA-1吸附參數...............................52 表4.3氣體分子擴散係數 53 表4.4 SO2-VSA進料組成與操作狀態 53 表4.5 SO2-VSA Skarstrom cycle與三塔六步驟程序之步驟時間..54 表4.6第一階段SO2-VSA之三塔操作流程循環順序 …55 表4.7 CO2-VSA吸附塔與吸附劑特性 61 表4.8氣體的性質…………………………….............................…...61 表4.9氣體在13X上的吸附曲線參數 62 表4.10 CO2-VSA進料組成與操作狀態 63 表4.11 CO2-VSA三塔六步驟程序之步驟時間…………………..63 表4.12第二階段CO2-VSA之三塔操作流程循環順序 …64 表5.1-1 驗證 66 表5.1-2 驗證 66 表5.1-3 驗證 66 表5.2-1 沖洗比對SO2濃度與回收率之影響 69 表5.2-2 沖洗比對NO2濃度與回收率之影響 69 表5.2-3 脫附壓力對SO2濃度與回收率之影響 74 表5.2-4 脫附壓力對NO2濃度與回收率之影響 74 表5.2-5 T1時間對SO2濃度與回收率之影響 79 表5.2-6 T1時間對NO2濃度與回收率之影響 79 表5.2-7 T2時間對SO2濃度與回收率之影響 84 表5.2-8 T2時間對NO2濃度與回收率之影響 84 表5.3-1 沖洗比對CO2濃度與回收率之影響 90 表5.3-2 進料壓力對CO2濃度與回收率之影響 93 表5.3-3 脫附壓力對CO2濃度與回收率之影響 96 表5.3-4 T1時間對CO2濃度與回收率之影響 99 表5.3-5 T2時間對CO2濃度與回收率之影響 102 表5.4 製程結果之比較 106 圖目錄 圖3.1 電腦程式之求解流程圖 41 圖4.1 程序示意圖…………………………………….……..43 圖4.2 Equilibrium isotherm on Dowex MWA-1………..44 圖4.3 Equilibrium isotherm on zeolite 13X……………..44 圖4. 4 Skarstrom Cycle………………………………………….45 圖4.5第一階段SO2-VSA三塔循環步驟程序圖 48 圖4.5第一階段SO2-VSA三塔循環步驟程序圖(續) 49 圖4.6第二階段CO2-VSA三塔循環步驟程序圖 58 圖4.6第二階段CO2-VSA三塔循環步驟程序圖(續) 59 圖5.1-1改變沖洗比下,模擬與文獻之結果比較圖……….....67 圖5.2-1不同沖洗比下,SO2濃度與回收率的變化曲線圖........ 70 圖5.2-2不同沖洗比下,NO2濃度與回收率的變化曲線圖........ 71 圖5.2-3不同沖洗比下,沖洗步驟結束後塔內SO2濃度分佈….72 圖5.2-4不同脫附壓力下,SO2濃度與回收率的變化曲線圖. 75 圖5.2-5不同脫附壓力下,NO2濃度與回收率的變化曲線圖. 76 圖5.2-6不同脫附壓力下,沖洗步驟結束後塔內SO2濃度分佈..77 圖5.2-7 不同T1時間下,SO2濃度與回收率之變化曲線圖.........80 圖5.2-8 不同T1時間下,NO2濃度與回收率之變化曲線圖........81 圖5.2-9不同T1時間下,高壓吸附(I)步驟結束後塔內SO2濃度分佈…………………………………………………….. 82 圖5.2-10 不同T2時間下,SO2濃度與回收率之變化曲線圖.....85 圖5.2-11 不同T2時間下,NO2濃度與回收率之變化曲線圖....86 圖5.2-12不同T2時間下,高壓吸附(II)步驟結束後塔內SO2濃度分佈………………………………………………….. 87 圖5.2-13 SO2-VSA六個步驟時間結束時,吸附塔內的溫度分佈圖……………………………………………....88 圖5.3-1不同沖洗比下,CO2濃度與回收率的變化曲線圖........ 91 圖5.3-2不同沖洗比下,沖洗(II)步驟結束後塔內CO2濃度分佈.92 圖5.3-3不同進料壓力下,CO2濃度與回收率的變化曲線圖...... 94 圖5.3-4不同進料壓力下,高壓吸附(II)步驟結束後塔內CO2濃度分佈…………………………………………………. 95 圖5.3-5不同脫附壓力下,CO2濃度與回收率的變化曲線圖. 97 圖5.3-6不同脫附壓力下,沖洗(II)步驟結束後塔內CO2濃度分佈………………………………………………………...98 圖5.3-7 不同T1時間下,CO2濃度與回收率之變化曲線圖....100 圖5.3-8不同T1時間下,高壓吸附(II)步驟結束後塔內CO2濃度分佈……………………………………………….….. 101 圖5.3-9 不同T2時間下,CO2濃度與回收率之變化曲線圖...103 圖5.3-10不同T2時間下,高壓吸附(II)步驟結束後塔內CO2濃度分佈………………………………………………….104 圖5.3-11 CO2-VSA六個步驟時間結束時,吸附塔內的溫度分佈圖……………………………………………..105

    1. Berlin, N.H., U.S. Patent 3,280,536, assigned to Esso research and engineering company (1966).
    2. Bird, R.B., W.E. Stewart and E. N. Lightfoot, Transport Phenomena, 503, Wiley, New York(1960).
    3. Chue, K.T., J.N. Yoo, S.H. Cho and R.T. Yang, “Comparison of Activated Carbon and Zeolite 13X for CO2 Recovery from Flue Gas by Pressure Swing Adsorption”, Ind. Eng. Chem. Res., 34(2), 591-598 (1995).
    4. Diagne D., M. Goto and T. Hirose, “New PSA Process with Intermediate Feed Inlet Position Operated with Dual Refluxes: Application to Carbon Dioxide Removal and Enrichment”, J. Chem. Eng. Jpn., 27(1), 85-89(1994).
    5. Diagne D., M. Goto and T. Hirose, “Numerical Analysis of a Dual Refluxed PSA Process During Simultaneous Removal and Concentration of Carbon Dioxide Dilute Gas from Air”, J. Chem. Tech. Biotechnol., 65, 29-38 (1996).
    6. Doong, S.J. and R.T. Yang, “Bulk Separation of Multicomponent Gas Mixtures by Pressure Swing Adsorption: Pore/Surface Diffusion and Equilibrium Models”, AIChE J., 32, 397 (1986).
    7. Doong, S.J., and R.T. Yang,“Bidisperse Pore Diffusion Model for Zeolite Pressure Swing Adsorption”, AIChE J., 33, 1045 (1987b).
    8. Dong, F., L. Hongmei, K. Akio, G. Motonobu and H. Tsutomu, “The Petlyuk PSA process for the separation of ternary gas mixtures: exemplification by separating a mixture of CO2–CH4–N2”, Separation and Purification Technology, 16, 159-166(1999)
    9. Farooq, S. and D. M. Ruthven, “A Comparison of linear Driving Force and Pore Diffusion Models for a Pressure Swing Adsorption Bulk Separation Process”, Chem. Eng. Sci., 45, 107 (1990b).
    10. Gomes, V. G. and M. M. Hassan “Coalseam methane recovery by vacuum swing adsorption”, Separation and Purification Technology, 24, 189-196 (2001)
    11. Guerin de Montgareuil, P. and D. Domine, U.S. Patent 3,155,468, to Societe L, Air Liquide, Paris(1964).
    12. Hassan, M.M., D.M. Ruthven and N.S. Raghavan, “Air Separation by Pressure Swing Adsorption on A Carbon Molecular Sieve”, Chem. Eng. Sci., 41, 1333 (1986).
    13. Hassan, M. M. and N. S. Raghavan, “Pressure Swing Adsorption Air Separation on a Carbon Molecular Seive-II. Investigation of a Modified Cycle with Pressure Equalization and No Purge”, Chem. Eng. Sci., 42, 2037 (1987).
    14. Izumi, J., “Hydrogen Sulfide Removel with Pressure Swing Adsorption from Process Off-Gas” in Fundamentals of Adsorption (Ed. M. Suzuki), Kodan-sha, Tokyo, 293-299(1992a).
    15. Izumi, J., “Process Off-Gas Treatment with Pressure Swing Adsorption”,Proceedings of Symposium on Adsorption Processes, Chung-Li, Taiwan, 71-84(1992b).
    16. Jee J.,M. Kim and C. Lee,“Adosorption Characteristics of Hydrogen Mixtures in a Layered Bed : Binary, Ternary, and Five-component Mixtures”, Ind. Eng. Chem Res. , 40, 868-878 (2001)
    17. Kikkinides, E.S. and R.T. Yang, “Simultaneous SO2/NOx Removel and SO2 Recovery from Flue Gas by Pressure Swing Adsorption ”, Ind. Eng. Chem. Res., 30(8), 1981-1989 (1991).
    18. Kikkinides, E.S. and R.T. Yang, “Gas Separation and Purification by Polymeric Adsorbents: Flue Gas Desulfurization and SO2 Recovery with Styrenic Polymers”, Ind. Eng. Chem. Res., 32(10), 2365-2372(1993).
    19. Kikkinides, E.S., R.T. Yang and S.H. Cho, “Concentration and Recovery of CO2 from Flue Gas by Pressure Swing Adsorption”, Ind. Eng. Chem. Res., 32(11), 2714-2720 (1993).
    20. Kim, J.N., K.T. Chue, K.I. Kim, S.H. Cho and J.K. Kim, “Non-Isothermal Adsorption of Nitrogen-Carbon Dioxide Mixture in a Fixed Bed of Zeolite-X”, J. Chem. Eng. Japan, 27(1), 45-51 (1994).
    21. Kowler, D.E. and R. H. Kadlec, “The Optimal Control of a Periodic Adsorber”, AIChE. J., 18, 1027 (1972).
    22. Lee, C., J. Yang and H. Ahn, “Effects of Carbon-to-Zeolite Ratio on Layered Bed H2 PSA for Coke Oven Gas”, AIChE J., Vol.45,No.3 (1999)
    23. Li, Z. and R. T. Yang, “Concentration Profile for Linear Driving Force Model for Diffusion in a Particle”, AIChE J., 45(1), 1999.
    24. Marsh, W.D., F.S. Pramuk, R.C. Hoke and C.W. Skarstrom, U.S. Patent 3,142,547 to Esso Research and Engineering Company(1964).
    25. McCabe, W.L., J.C. smith and P. Harriott, Unit operations of Chemical Engineering, 325, 406-408, Fourth Edition, McGraw-Hill, Inc.(1985)
    26. Montgomery, D.C. ,Design & Analysis of experiments, Wiley, New York (1997)
    27. Nakao, S. and M. Suzuki, “Mass Transfer Coefficient in Cyclic Adsorption and Desorption”, J. Chem. Eng. Japan, 16, 114(1983).
    28. Park, J., J. Kim and S. Cho, “Performance Analysis of Four-Bed H2 PSA Process Using Layered Beds”, AIChE J.,Vol. 46, No.4 (2000)
    29. Pugsley T.S., F. Berruti and A. Chakma, “Computer Simulation of a Novel Circulating Fluidized Bed Pressure-Temperature Swing Adsorption for Recovering Carbon Dioxide from Flue Gases”, Chem. Eng. Sci., 49(22), 4465-4481(1994).
    30. Rubel,A.M. and J.M.Stencel, The Effect of Low-Coneentration SO2 on the Adsorption of NO from Gas over Activated Carbon. 521-526. Fuel 1997.
    31. Ruthven,D.M., Principles of Adsorption & Adsorption Process,209-213,Wiley(1984)
    32. Shin, H.S. and K. S. Knabel, “Pressure Swing Adsorption: A Theoretical Study of Diffusion-Induced Separation”, AIChE J., 33, 654 (1987).
    33. Sircar, S. and J.W. Zondlo, U.S. Patent 4,013,429 to Air Product and Chemicals, Inc (1977).
    34. Siriwardane, R. V., M. Shen, E. P. Fisher and J. A. Poston, “Adsorption of CO2 on Molecular Sieves and Activated Carbon”, Energy & Fuels,15,279-284 (2001)
    35. Skarstrom, C.W., “Use of Adsorption Phenomena in Automatic Plant-Type Gas Analysis”, Ann., NY Acad. Sci.,72,751(1959).
    36. Skarstrom, C.W.,“Fractionating gas mixtures by adsorption”, U.S. Patent 2,444,627, assigned to Esso research and engineering company (1960).
    37. Smith, J.M. and H.C. Van Ness, Introduction to chemical Engineering Thermodynamics, p.109, 4th edith, McGraw-Hill Book Company,(1987)
    38. Takamura, Y., S. Narita, J. Aoki, S. Hironaka and S. Uchida “Evaluation of dual-bed pressure swing adsorption for CO2 recovery from boiler exhaust gas”, Separation and purification Technology 24,519-528(2001).
    39. Tamura, T., U.S. Patent 3,797,201, assigned to T. Tamura, Tokoy, Japan(1974).
    40. Turnock, P. H. and R. H. Kadlec, “Separation of Nitrogen and Methane via Periodic Adsorption”, AIChE J., 17, 335 (1971).
    41. Welty, J.R.,C.R. Wicks and R.E. Wilson, Fundamentals of Momentum, Heat, and Mass Transfer, AppendixⅠ, John Wiley & Sons, Inc. (1983).
    42. Yang, J., C. Lee and J. Chang,“Separation of Hydrogen Mixture by a Two-Bed Pressure Swing Adsorption Process Using Zeolite 5A”, Ind. Eng. Chem. Res. ,36, 2789-2798 (1997)
    43. Yang, R.T. and S.J. Doong, “Gas Separation by Pressure Swing Adsorption : A Pore Diffusion Model for Bulk Separation”, AIChE J., 31, 1829 (1985).
    44. Zhang, W.X., H. Yahiro, N. Mizuno, M. Iwamoto and J. Izumi, “Silver Ion-Exchanged Zeolites as Highly Effective Adsorbents for Removal of Nox by Pressure Swing Adsorption”, Journal of Materials Science Letters, 12, 1197-1198 (1993a).
    45. Zhang, W.X., H. Yahiro, N. Mizuno, J. Izumi and M. Iwamoto, “Removal of Nitrogen Monoxide on Copper Ion-Exchanged Zeolites by Pressure Swing Adsorption”, Langmuir, 9(9), 2337-2343 (1993b).
    46. Zhang, W. , M. Jia, J. Yu and T. Wu, “Adsorption properties of Nitrogen Monoxide on Silver Ion-Exchanged Zeolites”, chem. master., 11,920-923 (1999)
    47. Byung-Ki Na, Hwanug Lee, Kee-Kahb Koo and Hyung Song, “Effect of Rinse and Recycle Methods on the Pressure Swing Adsorption Process to Recover CO2 from Power Plant Gas Using Activated Carbon”, Ind. Eng. Chem. Res.,41,5498-5503(2002)
    48. Salil U. Rege, Ralph T. Yang, “Propane/propylene separation by pressure swing adsorption:sorbent comparison and mulitiplicity of cyclic steady states”, Chemical Engineering Science,
    57,1139-1149(2002)
    49. Jong-Ho Park, Hee-Tae Beum, Jong-Nam Kim, Soon-Haeng Cho, “Numerical Analysis on the Power Consumption of the PSA Process for Recovering CO2 from Flue Gas”, Ind. Eng. Chem. Res.,
    41,4122-4131(2002)
    50. Mark W. Ackley, Salil U. Rege, Himanshu Saxena, “Application of natural zeolites in the purification and separation of gases”, Microporous and Mesoporous Materials,61,25-42(2003)
    51.A. Olajossy, A. Gawdzik, Z. Budner and J. Dula, “Methane separation from coal mine methane gas by vacuum pressure swing adsorption”,
    IchemE,81,474-482(2003)
    52.Daeho Ko, Ranjani Siriwardane and Lorenz T. Biegler, “Optimization of a Pressure-Swing Adsorption Process Using Zeolite 13X for CO2 Sequestration”, Ind. Eng. Chem. Res.,42,339-348(2003)

    QR CODE
    :::