跳到主要內容

簡易檢索 / 詳目顯示

研究生: 王承洋
Cheng-Yang Wang
論文名稱: 二甲基甲醯胺之特殊潤濕行為: 擴散、收縮、移動
Peculiar wetting behavior of N,N-dimethylformamide: expansion, contraction, and running
指導教授: 曹恆光
Heng-Kwong Tsao
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 41
中文關鍵詞: 二甲基甲醯胺潤濕現象接觸角親水性自體移動
外文關鍵詞: N,N-dimethylformamide, wetting behavior, contact angle, hydrophilic, self-propulsion
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 二甲基甲醯胺為非揮發性溶液,其液滴在某些表面可表現非典型潤濕行
    為,如: poly(methyl methacrylate)、經燃燒處理過的黃銅和藍寶石基材。類
    似於水液滴擴散於完全潤濕性質基材,二甲基甲醯胺液滴展現一自發性擴
    散,其擴散係數大於Tanner’s law。 液滴在擴散時,液滴的外圍厚度高於其
    中心。與典型擴散不同,液滴在擴張到一定程度後會停止並開始向內收縮。
    最終,液滴在五分鐘內會縮成球帽形狀並有著相當低的接觸角角度。有趣的
    是,若在二甲基甲醯胺中添加界面活性劑,液滴會在擴張並收縮後表現一自
    發性移動。其移動軌跡為隨機路線,擴散係數為0.005~0.01 mm2/s。有別於
    大多數自發移動為反應性移動,二甲基甲醯胺液滴可重複跨越其經過的軌
    跡。這種自發性移動可以被歸功於無接觸角遲滯的基材和Marangoni stress。
    基於這些結果,我們提出了一種有關液滴的擴散、收縮和移動機制。


    The nonvolatile N,N-dimethylformamide (DMF) droplet can display peculiar
    wetting behavior on some substrates such as poly(methyl methacrylate), flametreated
    brass, and sapphire. Similar to the expansion of a water drop on a total
    wetting surface, the DMF droplet shows a spontaneous spreading initially but its
    spreading dynamics is beyond Tanner’s law. The spreading droplet exhibits a
    ridge near the rim whose height is greater than that of the center. Contrary to
    typical spreading, the DMF droplet stops its outward expansion at some point and
    begins inward contraction. Eventually, the droplet shrinks to a spherical cap with
    a low contact angle within 5 min. It is interesting to find that upon addition of
    surface-active agents, the droplet performs the self-propelled motion after
    spreading-contraction. The trajectory is random and can be described as the
    diffusive motion with the diffusivity ~0.005- ~0.01 mm2/s. Unlike self-propulsion
    driven by reactive wetting, the DMF droplet can cross the trail left by itself. This
    self-propulsion can be attributed to the effects of the hysteresis-free surface and
    Marangoni stress. Based on those results, a mechanism explaining the contraction
    and self-propelled droplet motion is proposed.

    摘要 .................................................................................................................... i ABSTRACT ....................................................................................................... ii 誌謝 ................................................................................................................... iii LIST OF CONTENTS ...................................................................................... iv LIST OF FIGURES ........................................................................................... v CHAPTER 1 INTRODUCTION ....................................................................... 1 CHAPTER 2 EXPERIMENT ............................................................................ 4 2-1 Materials ................................................................................................... 4 2-2 Fabrication of Flamed Brass ..................................................................... 4 2-3 Observation of Shape Dynamics and Droplet Motion ............................. 4 2-4 Wettability Characterization ..................................................................... 5 2-5 Relative Humidity Control ....................................................................... 5 CHAPTER 3 RESULT AND DICUSSION ....................................................... 6 3-1 Expansion and contraction of DMF on various surfaces ......................... 6 3-2 Effect of additives and self-running droplets ......................................... 12 3-3 Humidity and Mechanism....................................................................... 18 CHAPTER 4 CONCLUSION ......................................................................... 23 CHAPTER 5 SUPPORTING INFORMATION .............................................. 25 CHPATER 6 REFERENCE ............................................................................. 27

    [1] Sharma, J.; Mahima, S; Kakade, B. A.; Pasricha, R.; Mandale, A. B.;
    Vijayamohanan, K. Solvent-Assisted One-Pot Synthesis and Self-Assembly of
    4-Aminothiophenol-Capped Gold Nanoparticles. J. Phys. Chem. B 2004, 108,
    13280–13286.
    [2] Osakada, K.; Taniguchi, A.; Kubota, E.; Dev, S.; Tanaka, K.; Kubota, K.;
    Yamamoto, T. New Organosols of Copper(II) Sulfide, Cadmium Sulfide, Zinc
    Sulfide, Mercury(II) Sulfide, Nickel(II) Sulfide and Mixed Metal Sulfides in
    N,N-Dimethylformamide and Dimethyl Sulfoxide. Preparation,
    characterization, and physical properties. Chem. Mater. 1992, 4, 562–570.
    [3] Durmaz, H.; Dag, A.; Altintas, O.; Erdogan, T.; Hizal, G.; Tunca, U. One-Pot
    Synthesis of ABC Type Triblock Copolymers via in situ Click [3+2] and
    Diels−Alder [4+2] Reactions. Macromolecules 2007, 40, 191–198.
    [4] Goals, P. L.; Tsarevsky, N. V.; Sumerlin, B. S.; Matyjaszewski, K. Catalyst
    Performance in “Click” Coupling Reactions of Polymers Prepared by ATRP:
    Ligand and Metal Effects. Macromolecules 2006, 39, 6451–6457.
    [5] Hsu, C.-M.; Shivkumar, S. N,N-Dimethylformamide Additions to the Solution
    for the Electrospinning of Poly(e-caprolactone) Nanofibers. Mater. Eng. 2004,
    289, 334–340.
    [6] Lei, D.; Ying, X.; Zou, Z. Electrospinning of Polycaprolatone Nanofibers with
    DMF Additive: The Effect of Solution Proprieties on Jet Perturbation and Fiber
    Morphologies. Fiber Polym 2016, 17, 751–759.
    [7] Yamamoto, H.; Yano, H.; Kouchi, H.; Obora, Y.; Arakawa, R.; Kawasaki, H.
    N,N-Dimethylformamide-Stabilized Gold Nanoclusters as a Catalyst for the
    Reduction of 4-nitrophenol. Nanoscale 2012, 4, 4148–4154.
    28
    [8] Tyagi, R.; Kaur, N.; Singh, B.; Kishore, D. Noteworthy Mechanistic
    Precedence in the Exclusive Formation of One Regioisomer in the Beckmann
    Rearrangement of Ketoximes of 4-Piperidones Annulated to Pyrazoloindole
    Nucleus by Organocatalyst Derived from TCT and DMF. Synth. Commun.
    2013, 43, 16–25.
    [9] Semsarzadeh, M. A.; Amiri, S.; Azadeh, M. Controlled Radical Polymerization
    of Vinyl Acetate in Presence of Mesoporous Silica Supported TiCl4
    Heterogeneous Catalyst. Bull. Mater. Sci. 2012, 35, 867–874.
    [10] Mohammad, B. T.; Ahmad, T. N,N-Dimethylformamide-Promoted Reaction
    of Isocyanides and Barbituric Acids: an Easy Synthesis of 5-[(Alkyl or
    Arylamino) Methylene]Barbituric Acids. J. Chem. Res. 2010, 34, 140–144.
    [11] Kumar, R.; Wadhwa, D.; Prakash, O. Beckmann Rearrangement of 2-
    Hydroxy-5-Methylacetophenone Oxime using Vilsmeier-Haack Reagent
    (POCI3/ DMF): Synthesis of Some New Heterocycles. Heterocycl. Commun.
    2010, 16, 201–205.
    [12] Majid, M. H.; Mahdieh, G.; Leyla, M. Beyond a Solvent: Triple Roles of
    Dimethylformamide in Organic Chemistry. RSC Adv. 2018, 8, 27832–27862.
    [13] Liu, Y.; He, G.; Chen, K.; Jin, Y.; Li, Y.; Zhu, H. DMF-Catalyzed Direct and
    Regioselective C–H Functionalization: Electrophilic/Nucleophilic 4-
    Halogenation of 3-Oxypyrazoles. Eur. J. Org. Chem. 2011, 2011, 5323–5330.
    [14] Rai, A.; Rai, V. K.; Singh, A. K.; Yadav, L. D. S. [2 + 2] Annulation of
    Aldimines with Sulfonic Acids: A Novel One-Pot cis-Selective Route to β-
    Sultams. Eur. J. Org. Chem. 2011, 2011, 4302–4306.
    [15] Kawasaki, H.; Yamamoto, H.; Fujimori, H.; Arakawa, R.; Inada, M.; Iwasaki,
    S. Surfactant-Free Solution Synthesis of Fluorescent Platinum
    Subnanoclusters. Chem. Commun. 2010, 46, 3759–3761.
    [16] Hyotanishi, M.; Isomura, Y.; Yamamoto, H.; Kawasaki, H.; Obora, Y.
    Surfactant-Free Synthesis of Palladium Nanoclusters for Their Use in Catalytic
    Cross-Coupling Reaction. Chem. Commun. 2011, 47, 5750–5752.
    29
    [17] Isomura, Y.; Narushima, T.; Kawasaki, H.; Yonezawa, T.; Obora, Y.
    Surfactant-Free Single-Nano-Sized Colloidal Cu Nanoparticles for Use as An
    Active Catalyst in Ullmann-Coupling Reaction. Chem. Commun. 2012, 48,
    3784–3786.
    [18] Gascoyne, P. R. C.; Vykoukal, J. V.; Schwartz, A. A.; Anderson, T. J;
    Vykoukal, D. M.; Wayne K.; McConaghy, C. C.; Becker, F. F.; Andrews, C.
    Dielectrophoresis-Based Programmable Fluidic Processors. Lab Chip 2004, 4,
    299-309.
    [19] Lee, M.-Y.; Srinivasan, A.; Ku, B.; Dordick, J. S. Multienzyme Catalysis in
    Microfluidic Biochips. Biotechnol Bioeng. 2003, 83, 20-8.
    [20] Wu, C.-J.; Huang, C.-J.; Jiang, S.; Sheng, Y.-J.; Tsao, H.-K.
    Superhydrophilicity and Spontaneous Spreading on Zwitterionic Surfaces:
    Carboxybetaine and Sulfobetaine. RSC Adv. 2016, 6, 24827-24834.
    [21] Singh, V.; Huang, C.-J.; Sheng, Y.-J.; Tsao, H.-K. Smart Zwitterionic
    Sulfobetaine Silane Surfaces with Switchable Wettability for
    Aqueous/Nonaqueous Drops. J. Mater. Chem. A 2018, 6, 2279–2288
    [22] Tanner, L. H. The Spreading of Silicone Oil Drops on Horizontal Surfaces. J.
    Phys. D: Appl. Phys. 1979, 12, 1473–1484.
    [23] Singh, V.; Wu, C.-J.; Sheng, Y.-J.; Tsao, H.-K. Self-Propulsion and Shape
    Restoration of Aqueous Drops on Sulfobetaine Silane Surfaces. Langmur 2017,
    33, 6182-6191.
    [24] Li, S.; Liu, J.; Hou, J.; Zhang, G. Meniscus-Induced Motion of Oil Droplets.
    Coll. Surf. A: Physicochem. Eng. Aspects 2016, 469, 252-255.
    [25] Izri, Z.; van der Linden, M. N.; Michelin, S.; Dauchot, O. Self-Propulsion of
    Pure Water Droplets by Spontaneous Marangoni-Stress-Driven Motion. Phys.
    Rev. Lett. 2014, 113, 248302.
    [26] Schmitt M.; Stark, H. Marangoni Flow at Droplet Interfaces: Three-
    Dimensional Solution and Applications. Phys. Fluids 2016, 28, 012106.
    30
    [27] Myers D. Surfaces, Interfaces, and Colloids: Principles and Applications;
    Wiley-VCH: New York, 1999; pp 415-420.
    [28] Cira, N. J.; Benusiglio, A.; Prakash, M. Vapour-Mediated Sensing and
    Motility in Two-Component Droplets. Nature 2015, 519, 446-450.
    [29] Malvadkar, N. A.; Hancock, M. J.; Sekeroglu, K.; Dressick, W. J.; Demirel,
    M. C. An Engineered Anisotropic Nanofilm with Unidirectional Wetting
    Properties. Nat. Mater. 2010, 9, 1023−1028.
    [30] Varagnolo, S.; Schiocchet, V.; Ferraro, D.; Pierno, M.; Mistura, G.; Sbragaglia,
    M.; Gupta, A.; Amati, G. Tuning Drop Motion by Chemical Patterning of
    Surfaces. Langmuir 2014, 30, 2401−2409.
    [31] Yao, X.; Bai, H.; Ju, J.; Zhou, D.; Li, J.; Zhang, H.; Yang, B.; Jiang, L.
    Running Droplet of Interfacial Chemical Reaction Flow. Soft Matter 2012, 8,
    5988-5991.
    [32] Wei, H.-H. Marangoni-Enhanced Capillary Wetting in Surfactant-Driven
    Superspreading. J. Fluid Mech. 2018, 855, 181-2.
    [33] Theodorakis, P. A.; Muller, E. A.; Craster, R. V.; Matar, O. K. Superspreading:
    Mechanism and Molecular Design. Langmuir 2015, 31, 2304-2309.
    [34] Rafai, S.; Sarker, D.; Bergeron, V.; Meunier, J.; Bonn, D. Superspreading:
    Aqueous surfactant Drops Spreading on Hydrophobic Surfaces. Langmuir
    2002, 18, 10486-10488.
    [35] Dominguez, H.; Pizio, O. On the Composition Dependence of the
    Microscopic Structure, Thermodynamic, Dynamic and Dielectric Properties of
    Water-Dimethyl formamide Model Mixtures. Molecular dynamics simulation
    results, J. Phys. Condens. Matter. 2017, 20, 43602:1-15.
    [36] Weng, Y.-H.; Wu, C.-J.; Tsao, H.-K.; Sheng, Y.-J. Spreading Dynamics of a
    Precursor Film of Nanodrops on Total Wetting Surfaces. Phys. CHem. Chem.
    Phys. 2017, 19, 27786.

    QR CODE
    :::