| 研究生: |
王明滄 Ming-Tsang Wang |
|---|---|
| 論文名稱: |
探討氧化還原電位作為Clostridium butyricum連續產氫之研究 Effect of ORP on hydrogen production by clostridium butyricum ia bubble column bioreactor |
| 指導教授: |
徐敬衡
Chin-Hang Shu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 56 |
| 中文關鍵詞: | 氧化還原電位 、氫氣 |
| 外文關鍵詞: | oxidation reduction potential, hydrogen |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
氫氣是替代石化燃料的最好選擇。由於石化燃主要來自石油本身,而其蘊藏量不斷地在減少中,並且使用石油後所造成的環保問題與防治成本也不斷地在惡化與增加中。相對地,氫氣燃燒後的產物是水,不會造成環境的負荷,可謂是最乾淨的燃料。因此,氫氣被科學家認為是取代石油世紀的主要能源。氫氣的使用,目前尚未普及化的主要瓶頸是缺乏重要相關科技之研發,如生產技術、儲存、運輸與應用科技。過去二十多年的研發,已開啟許多不同方式來生產氫氣。科學家在文獻中也強調生物法生產氫氣較物理法和化學法為優。
氧化還原電位 ( Oxidation Reduction Potential,ORP )可以用來量測水溶液中碳、氮、硫、磷以及金屬類之間的氧化還原狀態,所以從1983年迄今,一直被用來作為監測水質狀況以及生物反應趨向的指標,廣泛地應用於廢水處理的監測。
一般而言,進行連續式饋料反應均是以碳源的使用情形來判斷是否進料,本實驗則是利用ORP在產氫反應開始時會下降至低點的特性,進行進料的動作。而根據實驗亦證實此法確實可行。
本實驗分別兩大部分討論。第一部分是進行控制不同pH的厭氧醱酵產氫;二是以最佳產氫pH為操控值,並利用ORP作為進料指標來進行連續式饋料產氫。實驗結果顯示,在控制pH=4.5時的批次厭氧產氫有最大產氫量達4630 ml。而依pH值控制的高低不同,產氫時ORP值之最低點及產氫速度會有所不同,pH值6.5、5.5、5.0及4.5的產氫速度依次為:4.98、7.02、11.31及11.38 ml / min。而進行連續饋料產氫方面,利用ORP降至低點時進料共進料五次,得到約19000ml氫氣。在前三次進料時產氫速度均維持在11.37 ml/min,到第四、第五次才依序減為6.42 ml/min及3.90ml/min。
Hydrogen is considered to be one of the best alternative fuels to petroleum. Most of pollutants of our environment are resulted from widely using petroleum as fuels. Hydrogen is also the cleanest energy because its product is water after burning with oxygen. It is believed that hydrogen will replace the petroleum as the major fuel in the next era.
參考文獻
王前淇 (1995), “ ORP對固定化污泥反應槽操作之影響”, 國立清華大學化學工程研究所碩士論文
白明德, “厭氧生物產氫機制與操作策略之研究”, 成功大學研究所碩士論文, 1999, 台南。
許駿發, “工業技術人才培訓計畫講義─高溫丁醇發之理論與應用”, 經濟部工業局, 1998, 台北。
Allan E. K., “Distribution and Activity of Microorganisms in Lakes;Effect of Physical Processes. “,Ford Y. E. eds. , pp.47-68, Aquatic Microbiology., Blackwell Scientific Publications, Inc., 1993, Boston.
Brosseau, J. D. and Zajic, J. E.,” Hydrogen gas production with Citrobacter intermedius and Clostridium pasteurianum.”, J. Chem. Tech. Biotechnol., 32 496, 1982.
Charpentier, J., Martin, G., Wacheux, H. and Gilles, P., (1998), “ ORP regulation and activated sludge:15 years of experience.” ,Wat. Sci. Technol., 38(3):197-208
Gest, H. and Peck, H. D., Jr., “A study of the hydrogenlyase reaction with systems derived from normal and anaerobic coli-aerogenes bacteria.”, J. Bacteriol., 70, 326, 1955
Gerhard G., “ Bacterial Metabolism .“ , Spring-Verlag New York, pp. 208-282, 1986.
Gray, C. T. and Gest, H., “Biological formation of moleculat hydrogen.”, Science, 148, 186, 1965
Heydrickx M., Vos De P., Thibau B., Stevens P. and Ley De J. ,” Effect of Various External Factors on the Fermentative Production of Hydrogen Gas from Glucose by Clostridium butyricum Strains in Batch Culture .“ , System. Appl. Microbiol., Vol. 9 pp. 163-168, 1987.
Heydrickx M., Vos De P., Vancanneyt M. and Ley De J.,“ The fermentation of Glycerol by Clostridium butyricum LMG 1212t2 and 1213t1 and C. pasteurianum LMG 3285.”, Appl. Microbiol. Biotechnol., Vol. 34, pp. 637-642, 1991.
Johns, A. T., “The mechanism of propionic acid formation by Veillonella gazogenes.”, J. Gen. Microbiol., 5, 326, 1951.
Johns, A. T. and Barker, H. A., “Methane formation, fermentation of ethanol in the absence of CO2 by methanobacillus omelianskii.”, J. bacterial., 80, 837, 1960.
Joseph S. T. and Eva R. K ., “ Intracellular Conditions Required for Initiation of Solvent Production by Clostridium acetobutylicum.”, Appl. and Environ. Microbiol., Vol.52, No.1, pp.86-91,1986.
Jun M. Y., Kim S. K. and Kim S.Y. ,“ Riboflavin-Sensitized Phoooxidation of Ascorbic Acid;Kinetics and Amino Acid Effects .”, Food Chemistry, Vol. 53, No. 4, pp.397-403, 1995.
Kataoka N., Miya A. and Kiriyama K., “ Studieson Hydrogen Production by Continuous Culture System of Hydrogen-Producing Anaerobic Bacteria .“, Wat. Sci. Tech., Vol. 36, pp. 41-47, 1997.
Karube, I., Matsunaga, T., Tsuru, S., and Suzuki, S., “Continuous hydrogen production by immobilized whole cells of Clostridium butyricum.” , Biochim biophys. Acta, 444 , 338 , 1976.
Karube I., Urano N., Matsunaga T. and Suzuki S., “ Hydrogen Production from Glucose by Immobilized Growing Cells of Clostridium butyricum.”, Eur. J. Appl. Microbiol. Biotechnol., Vol. 16, pp.5-9, 1982.
Koch, F. A. and Oldham, W. K. (1985) , “ Oxidation-reduction potential- a tool for monitoring , control and optimization of biological nutrient removal systems.” , Wat. Sci. Technol., 17:259-281
Laurence G., Christian C., Isabel V. and Philippe S. ,“ Regulation of Metabolic Shifts in Clostridium acetobutylicum ATCC 824.” , FEMS Microbiology Reviews, Vol. 17, pp. 287-297, 1995.
Lawier, A. , ”Walker Bill to boost hydrogen sparks democratic grumbling .”, Science, 267, 613, 1995.
May, P. S., Blanchard, G. C., and Foley, R. T., “Biochemical hydrogen generators:18th Annual Proceedings Power Sources Conferences.”, 1964, May 19-21
Mitsui, A. In.,“Solar-Hydrogen Energy System.”, Pergamon, Oxford and New York,p.171,1979.
Pakes, W. C. C. and Jollyman , W . H., “The bacterial decomposition of formic acid into CO2 and H2 .”, J. Chem, Soc., 79, 386, 1901
Pourbaix, M. (1963), “ atlas dequilibres electrochimiques.”, Gauthiers – Villars et Cie, Editeur-Imprimeur-Libraire, 55, Quai des Grands Augustin, Paris.
Rheinheimer G., “ The Influence of Environmental Factors on the Development of Microorganisms.”, Rheinheimer G. eds., Aquatic Microbiology 4th ed., pp.111-147, Baffins Lane, 1992, England.
R. Nandi and S. Sengupta ,“Microbial Production of Hydrogen: An Oveview.”, Rohrback, G. H., Scott, W. R., and Canfield, J. H., in proceedings of the 16th Annual Power Sources Conference, 18, 1962.
Suzuki, S., Karube, I., Matsunga, T., and Kuriyama, S.,” Biochemical energy conversion using immobilized whole cells of Clostridium butyricum.”, Biochimie, 62, 353, 1980.
Suzuki, S., Karube, I., and Matsunaga, T., “Application of a biochemical fuel cell to wastetaters.”, Biotechnol. Bioeng. Symp. No. 8 , 501, 1978.
Taguchi, F., Chang, J. D., Mizukami, N., Saito-Taki, T., Hasegawa, K., and Morimoto, M., “Isolation of a hydrogen productionbacteria, Clostridium beijerinckii strain AM 21B from termites.”, Can. J. Microbiol., 39, 726, 1993.
Taguchi , F., Hasegawa , K., Saito-Taki, T., and Hara, K.,” Simultaneous production of xylanase and hydrogen using xylan in batch culture of Clostridium sp.”, strainX53, J. Ferment. Bioeng., 81, 178, 1996
Taguchi, F., Mizukami, N., Hasegawa, K., Hasegawa, K., and Saito-Taki, T.,” Direct conversion of cellulosic materials to hydrogen by Clostridium sp. Strain no. 2.”, Enzyme Microbiol. Technol., 17, 147, 1995.
Taguchi, F., Mizukami, N., Saito-Taki , T., and Hasegawa , K.,”Hydrogen production from continuous fermentation of xylose during growth of Clostridium sp. Strain no. 2, Can. J. Microbiol.”, 41, 536, 1995.
Taguchi , F., Yamada , K., Hasegawa , K., Taki-Saito, T., and Hara, K., “Continuous hydrogen production by Clostridium sp. Strain no. 2 from cellulose hydrolysate in an aqueous two-phase system.”, J. Ferment. Bioeng., 82, 80, 1996.
Thauer, R. K., Jungermann, K., and Decker, K.,” Energy conservation in chemotrophic anaerobic bacteria, Bacteriol.” , Rev.,41, 100, 1977.
Twarog, R. and Wolfe, R. S., “Role of butyryl phosphate in the energy metabolism of Clostridium tetanomorphum.”,J. Bacteriol., 86, 112, 1965
Wareham, D. G., Hall, K. J. and Mavinic, D. S. (1993) , “ Real-time control of aerobic-anoxic sludge digestion using ORP.”,J. Environ. Engineer., 119(1):120