| 研究生: |
林少偉 Shao-Wei Lin |
|---|---|
| 論文名稱: |
非週期性晶格極化反轉鈮酸鋰作為主動式窄頻寬通多波長濾波器及倍頻多波長濾波器 Active narrowband multiple Telecom-Band Fundamental and Second-Harmonic wavelength filter in aperiodically poled lithium niobate |
| 指導教授: |
陳彥宏
Yen-Hung Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 鈮酸鋰 、倍頻 、窄頻 、主動式 、濾波器 、多波長 、極化反轉 、準相位匹配 |
| 外文關鍵詞: | Lithium Niobate, LiNbO3, Quasi-Phase Matching, active, narrow band, telecom band, SHG, second-harmonic generation, poling, Multiple Wavelength, filter |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
光學濾波器在光通訊中處理特定頻譜的訊號是不可或缺的;窄瀕濾波器更是特別重要;再者,多波長濾波器的主動元件在通訊系統中較被動元件更強大且多功能。
我們設計且做了第一個利用APLN當作在C band的主動式窄頻寬多波長濾波器。在5公分長的APLN元件,外加約700(V/mm)的電場(設設計值為298V/mm),能夠同時使得8個電信波長有大於90%以上的穿透率(設計上~100%),每個波長的頻寬約為0.45nm。我們在一片2cm的串極式APLN晶體,1cm長的波長濾波器接著1cm長的波長轉換器,得到了高度地抑制了邊葉波段的四個窄頻的二倍頻光。
Optical Filters are quite dispensibale in optical communication allows the process of signals in special spectrum portions. Narrowband filters are particularly important. Moreover, Active devices with multiple wavelength filter would be much powerful and functional in the communication system than the passive ones.
we report the design and first experimental observation of active narrowband multiple wavelength filters in aperiodically poled lithium niobates (APLN) crystals in telecom C band. Simultaneous transmission of >90% (~100% in design) of 8 telecom wavelengths with each a bandwidth of ~0.45 nm was achieved in a 5-cm long APLN device when an electro-optic field of ~700 V/mm (~298 V/mm in design) was applied. We also obtained four peak-narrowed and highly sidelobe-suppressed second-harmonic generation (SHG) signals of four telecom wavelengths from a monolithic LiNbO3 crystal cascading a 1-cm long APLN wavelength filter and a 1-cm long APLN wavelength converter.
[1]A. K. Srivastava, et. al., “1 Tb/s transmission of 100WDM
10Gb/schannels over 400km of TrueWave fiber,” OFC’98, PD10.
[2]G. E. Town, K. Sugden, J. William, I. Bennion, and S.
Poolee,“Wide-band Fabry-Perot-like filters in optical fiber,” IEEE
Photon.Technol. Lett., 7, p78 (1995).
[3]Ishida, H. Takahashi, and Y. Inoue, “Digitally tunable opticalfilters
using arrayed-waveguide grating (AWG) multiplexers and optical
switches,” J. Lightwave Technol., 15, p321 (1997).
[4]P. H. Lissberger , A. K. Roy and D. J. McCartney, “Narrowband
position-tuned multiplayer interference filter for use in single-mode-fibre
systems,” Electron. Lett., 21, p798 (1985).
[5]J. W. Evans, “The Šolc birefringent filter,” J. Opt. Soc. Amer., 48,
p142 (1958).
[6]X. Chen, J. Shi, Y. Chen, Y. Zhu, Y. Xia, and Y.
Chen,56“Electro-optic Solc-type wavelength filter in periodically poled
lithium niobate,” Opt. Lett., 28, p2115-2117 (2003)
[7]X.Gu, X. Chen , Y. Chen, X. Zeng, Y. Xia, and Y. Chen, “Narrowband
multiple wavelengths filter in aperiodic optical superlattice,” Opt. Comm.
237, 53 (2004)
[8]S. Kirkpatrick,C. D. Gelatt, Jr. ,M.P.Vecchi “Optimization by
Simulated Annealing”13 May 1983,Volume 220, Number 4598 SCIENCE
[9]A. Yariv and P. Yeh, “Optical Waves in Crystal: propagation and
control of laser radiation,” John Wiley & Sons, New York(1984).
[10]J. Shi, X. Chen, Y. Xia, Y. Chen “Electro-optical polarization
controller based on solc filter in periodically poled lithium niobate” SPIE
Vol. 4905 (2002)
[11]L. Chen, X. Chen,_ Y. Chen, J. Shi and Y. Xia” Electro-Optics and
Its Applications in Domain-Inverted Optical Superlattice” Journal of the
Korean Physical Society, Vol. 46, June 2005, pp. S253_S259
[12]A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J.
Quantum Electron. QE-9, 919 (1973).
[13] “PERIODICALLY POLED LITHIUM NIOBATE:MODELING,
FABRICATION, ANDNONLINEAR-OPTICAL PERFORMANCE”,
Gregory David MillerJuly 1998,Department of Electric Engineering,
Stanford University
[14]” Investigation on reversed domain structures in lithium niobate
crystals patterned by interference lithography” S. Grilli, P. Ferraro, S. D.
Nicola, A. F., Giovanni Pierattini, P. D. Natale, and M. Chiarini , Optics
Express, Vol. 11, Issue 4, pp. 392-405
[15] J. Webjorn, F. Laurell, G. Arvidsson, “Blue light generated by
frequency doubling of laser diode light in a Lithium Niobate channel
waveguide,” IEEE Photon Techonol. Lett., 1, p316-318 (1989)
[16] Alan C. G. Nutt, Venkatraman Gopalan, and Mool C.
Gupta,“Domain inversion in LiNbO3 using direct electron-beam
writing,” Appl. Phys. Lett., 60, p2828-2830 (1992)
[17] “NUCLEATION CONTROL FOR A UNIFORM PERIODICALLY
POLED STRUCTURE” Y. Nomura, N.E.Yu, S. Kurimura, and K.
Kitamura National Institute for Materials Science (NIMS) H. Seki, M.
Maruyama, Y. Kato, H. Nakajima Department of Applied Physics,
Waseda University J. H. Ro Department of Medical Engineering, Pusan
National University Y. Gotoh Department of Material Science and
Technology, Tokyo University of Science
[18] “Temperature-dependent Sellmeier equation for the index of
refraction, ne, in congruent lithium niobate” Dieter H. Jundt, October 15,
1997 / Vol. 22, No. 20 / OPTICS LETTERS
[19]”Nolinear Optics” Robert W. Boyd ,2.9.”Quasi-Phase-Matching”
[20]“Optical Communications” Gagliardi, R. M.; Karp, S.
[21]” Active multi-channel narrowband wavelength filters and mode
converters in Ti:PPLN waveguides”中央大學光電科學研究所碩士論文,
黃俊育, 中華民國九十五年十月。
[22]” Diode-pumped internally Q-switched Nd:MgO:PPLN Laser” 中央
大學光電科學研究所碩士論文,張育誠,中華民國九十五年十月。
[23]”Actively Q-switched Nd:YVO4 laser using an electro-optic
periodically poled lithium niobate crystal as a laser Q-switch”, Y. H.
Chen and Y. C. Huang, OPTICS LETTERS / Vol. 28, No. 16 / August 15,
2003
[24]” Nonlinear multiwavelength conversion based on an aperiodic
optical superlattice in lithium niobate” Y. W. Lee, F. C. Fan, and Y. C.
Huang, B. Y. Gu and B. Z. Dong, M. H. Chou, December 15, 2002 / Vol.
27, No. 24 / OPTICS LETTERS
[25]”Optical frequency mixers using three-wave mixing for optical fiber
communications”By M.H.Chou,August 1999,Department of Applied
physics, Stanford University