跳到主要內容

簡易檢索 / 詳目顯示

研究生: 廖信豪
Xin-hao Liao
論文名稱: 利用SoWMEX/TiMREX實驗期間X-band雷達資料估計降雨
The Rainfall Estimation Using the X-band Radar Data during SoWMEX/TiMREX
指導教授: 陳台琦
Tai-Chi Chen Wang
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 大氣物理研究所
Graduate Institute of Atmospheric Physics
畢業學年度: 97
語文別: 中文
論文頁數: 105
中文關鍵詞: 定量降水估計
外文關鍵詞: quantitative precipitation estimation (QPE)
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣5 到 6月份的梅雨鋒面以及7到9月間的颱風,除了系統本身主要環流和降雨之外,經常會引進強烈的西南氣流並夾帶著劇烈豪雨,對台灣地區造成重大災害。因此,定量降水估計及預報的準確性就顯得相當重要。
    而雷達觀測能提供高時空解析度的觀測資料,透過雙偏極化雷達觀測可得到偏極化參數Z(reflectivity)、ZDR(differential reflectivity)、ΦDP(differential phase)、KDP(specific differential phase)及ρhv(correlation coefficient)等,利用這些偏極化參數得到的降雨估計演算法,如:R(Z),R(Z,ZDR)、R(KDP)等不同的關係式估計降雨,近十幾年來在不同波段的雙偏極化雷達被廣泛的應用,降雨估計的精確度也有不錯的結果。
    本研究主要是利用在西南氣流實驗期間,中央大學車載X-波段雙偏極化雷達(TEAM-R)的觀測資料(Z、ZDR、KDP)估計降雨,與雨滴譜儀(二維雨滴譜儀2-DVD和JWD撞擊式雨滴譜儀)、局屬自動雨量站的實際觀測作比較。來評估X-波段雙偏極化雷達在台灣南部地區估計降雨的適用性。
    使用的資料時間為2008年6月14日的個案(IOP8)。結果顯示在降雨估計方面,利用R(KDP)其精確度來的比R(Z)還要好。利用R(KDP)估計降雨產生誤差的分布情形,隨著觀測距離越遠與地勢高度增加。使用的資料高度也跟著增加,與地面雨量站或雨滴譜儀站的變異性也就越大。根據前人研究,降雨估計所能接受的誤差範圍約在15到20%以內。因此利用TEAM-R雷達資料估計降雨時,20公里以內是不錯的估計範圍。另外,因受ZDR衰減修正不足的影響,在利用R(Z,ZDR) 估計降雨時,會有高估的情況產生。


    In Taiwan, the Mei-yu fronts in May and June and the typhoons in summer and early fall often induce strong southwesterly flows and consequent heavy rainfall, resulting in severe disasters. Therefore, the accuracy of quantitative precipitation estimation and forecast is of great importance.
      Weather surveillance radars provide observational data at fine temporal and spatial resolutions; moreover, dual polarimetric radars offer parameters such as reflectivity (Z), differential reflectivity (ZDR), differential phase (ΦDP), specific differential phase (KDP) and copolar correlation coefficient (ρhv). In recent decades, a number of rainfall estimation algorithms utilizing these polarimetric parameters, e.g. R(Z), R(Z,ZDR) and R(KDP), are applied to dual polarimetric radars with different wavelengths and perform well in accuracy.
      This study mainly exploit the polarimetric data (Z, ZDR and KDP) of the NCU’s mobile X-band polarimetric radar (TEAM-R) during SoWMEX/TiMREX to estimate rainfall. These polarmetric rainfull estimates then were compared with measurement from disdrometers (2DVD and JWD) and the CWB’s automatic rain gauges. The suitability of the quantitative precipitation estimates retrieved from the X-band polarimetric radar in southern Taiwan was evaluated.
      The data on June 14, 2008 (during IOP-8) were analyzed. In rainfall estimation, R(KDP) is shown to perform better than R(Z), but the errors utilizing R(KDP) increase as the target distance gets larger and the terrain gets higher. The higher the used data is, the larger the variability between the radar and the rain gauge (or disdrometer) can be. According to former studies, the acceptable range of errors in rainfall estimation is approximately 15~20%. For this reason, TEAM-R’s data in a range within 20 kilometers are acceptable. In addition, R(Z,ZDR) usually overestimates the rainfall due to insufficient correction for the attenuation of ZDR.

    英文摘要..................................................i 中文摘要.................................................ii 致謝....................................................iii 目錄.....................................................iv 圖目錄...................................................vi 表目錄.................................................xiii 符號說明................................................xiv 第一章:序論..............................................1 1- 1:前言........................................1 1- 2:文獻回顧....................................2 1- 3:研究方向....................................4 第二章:資料來源..........................................5 2- 1:觀測儀器....................................5 2- 2:個案介紹....................................7 第三章:TEAM-R雷達觀測與S-POL雷達觀測比較.................9 3- 1:雷達資料處理................................9 3- 2:風場合成...................................12 3- 3:偏極化參數比較.............................14 第四章:雷達降雨估計精確度...............................19 4- 1:利用雨滴譜儀資料推導降雨估計公式...........19 4- 1- 1:R(Z)關係式.........................19 4- 1- 2:R(KDP)關係式.......................21 4- 1- 3:R(Z,ZDR)關係式.....................22 4- 2:R(KDP)應用.................................23 4- 2- 1:R(KDP)與R(Z)在降雨估計精確度的比較.23 4- 2- 2:利用R(KDP)估計降雨與地面觀測比較...25 4- 3:利用R(Z,ZDR)估計降雨與地面觀測比較.........27 4- 4:小結.......................................30 第五章:結論與未來展望...................................31 5- 1:結論.......................................31 5- 2:未來展望...................................34 參考文獻.................................................35 附圖.....................................................38 附表.....................................................84

    張偉裕, 2002: 利用雨滴譜儀分析雨滴粒徑分佈(納莉颱風個
    案), 國立中央大學碩士論文, 95頁。
    劉慈先, 2002: SCSMEX 期間利用C-Pol 偏極化雷達氣象參數觀測降
    水系統之分析, 國立中央大學碩士論文, 67 頁。
    林位總, 2004: 利用二維雨滴譜儀研究雨滴譜特性, 國立中央大學
    碩士論文, 89頁。
    紀博庭, 2005: 利用中央大學雙偏極化雷達資料反求雨滴粒徑分佈
    及降雨率方法的研究, 國立中央大學碩士論文, 70頁。
    呂崇華, 2006: 雙偏極化雷達資料分析梅雨鋒面雨滴粒徑分佈的物
    理特性, 國立中央大學碩士論文, 100頁。
    Anagnostou, E. N., W. F. Krajewski, A. Kruger, and B. J.
    Miriovsky, 2004: High-Resolution Rainfall Estimation
    from X-Band Polarimetric Radar Measurements, Journal
    of Hydrometeorology, Volume 5, Issue 1, pp.110–128
    Bringi, V. N., V. Chandrasekar, N. Balakrishnan, and D.S.
    Zrnic, 1990: An Examination of propagation effects
    in rainfall on radar measurements at microwave
    frequencies. J. Atmos. Oceanic Technol., 7, 829-840.
    Chong, M., and J. Testud, 1983: Three-dimensional wind
    field analysis from dual-Doppler radar data, Part III:
    The boundary condition: An optimum determination based
    on a variational concept, J. Climate and Appl. Meteor,
    22, 1227-1241.
    Gorgucci, E., G. Scarchilli, and V. Chandrasekar, 1999: A
    procedure to calibrate multiparameter weather radar
    using properties of the rain medium, IEEE Trans.
    Geosci. Remote Sens., 37, 269–276.
    Liou, Y. -C., and Y.-J. Chang, 2009: A variational
    multiple-doppler radar three-dimensional wind
    synthesis method and its impact on thermodynamic
    retrieval. Mon. Wea. Rev. ( in press )
    Liu, D. C., and J. Nocedal, 1988: On the limited memory
    BGFS method for large scale optimization, Tech. Rep.
    NAM 03, Department of Electric Engineering and
    Computer Science, Northwestern University, 26 pp.
    Matrosov, S. Y., D. E. Kingsmill, B. E. Martner, and F.
    Martin Ralph, 2005: The Utility of X-Band Polarimetric
    Radar for Quantitative Estimates of Rainfall
    Parameters, Journal of Hydrometeorology, Volume 6,
    Issue 3, pp. 248–262.
    ———, R. Cifelli, P. C. Kennedy, S. W. Nesbitt, S. A.
    Rutledge, V. N. Bringi, and B. E. Martner, 2006: A
    Comparative Study of Rainfull Retrievals Based on
    Specific Differential Phase Shifts at X- and S-Band
    Radar Frequencies, J. Atmos. Oceanic Technol., 23,
    952–963.
    O''Brien, J. J., 1970: Alternative Solutions to the
    Classical Vertical Velocity Problem. J. Appl. Meteor.,
    9, 197–203.
    Sachidananda, M. and D.S. Zrnic, 1986: Differential
    propagation phase shift and rainfall rate estimation.
    Radio Sci., 21,235-247.
    Shapiro, A., S. Ellis, and J. Shaw, 1995: Single-Doppler
    velocity retrievals with Phoenix II data: Clear air
    and microburst wind retrievals in the planetary
    boundary layer, J. Atmos. Oceanic Technol., 52, 1265–
    1287.
    Vivekanandan, J., G. Zhang, S. M. Ellis, D. Rajopadhyaya,
    and S. K. Avery, 2003: Radar reflectivity calibration
    using differential propagation phase measurement.
    Radio Sci., 38, 8049, doi: 10.1029/2002RS002676.
    Zrnic’ D.S., T.D. Keenan, L.D. Carey, and P. May, 2000:
    Sensitivity analysis of polarimetric variables at a 5-
    cm wavelength in rain. J. Appl. Meteorol., 39, 1514-
    1526

    QR CODE
    :::