| 研究生: |
李柏威 Po-Wei Lee |
|---|---|
| 論文名稱: |
基於犁耙式接收器實現非地面窄頻物聯網殘餘時頻誤差之聯合最大概似估計方法 Joint Maximum Likelihood Estimation for Residual Time and Frequency Offsets in Non-Terrestrial Narrowband IoT Based on Rake Receiver |
| 指導教授: |
林嘉慶
Jia-Chin Lin |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 通訊工程學系 Department of Communication Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 59 |
| 中文關鍵詞: | 窄頻物聯網 、非地面網路 、窄頻物理層隨機存取通道 、最大概似估計 |
| 外文關鍵詞: | NB-IoT, Non-terrestrial Networks, NPRACH, Maximum Likelihood Estimation |
| 相關次數: | 點閱:25 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著物聯網技術在全球快速的擴展,在非地面網路中實現高效連接變得更加重要。非地面網路(Non-terrestrial Networks, NTNs)的物聯網(Internet of Things, IoT)技術通常遵循第三代合作夥伴計畫(The Third Generation Partnership Project, 3GPP)的規範,而3GPP致力於建立全球統一的窄帶物聯網(Narrowband Internet of Things, NB-IoT) 運作標準。本文研究了一種統一的隨機存取(Random Access, RA)程序,使NB-IoT協議能夠在無需全球導航衛星系統(Global Navigation Satellite System, GNSS) 連接的情況下,在NTN與地面網路(Terrestrial Networks, TN)之間實現無縫運作。為了保證高精度和向後相容性,該方法在窄頻物理層隨機存取通道(Narrowband Physical Random Access Channel, NPRACH)接收器上採用了共同多普勒頻移的預補償與後補償。同時針對衛星上NPRACH接收器,還利用了共用傳播延遲進行預先定時提前(Pretime Advance, Pre-TA)與隨機存取機會(Random Access Opportunity, RAO)的延後處理。
本文提出了一種犁耙式接收器(rake receiver)架構,在每個犁耙式分支上配置一組訊符等級關聯器(Symbol-Level Correlator, SLC),以在完成NPRACH前導碼檢測後,對剩餘頻率誤差(Residual Frequency Error, RFE)與剩餘時序誤差(Residual Timing Error, RTE)進行聯合最大概似估計(Joint Maximum Likelihood Estimation, JMLE)。該技術利用高速率訊號處理,在時域對接收訊號進行降取樣(Decimation)以降低後續運算複雜度,並在頻域進行上取樣(Upsampling)以提升餘頻率誤差估計的精確度。透過相干累加訊符等級關聯器輸出的平方幅度,可進一步提升訊號對干擾與雜訊比(SINR)。本文所提出之方法具備高度彈性與實用性,不僅能在超越單一子載波間距與單一符號持續時間的範圍內精確估計剩餘時序誤差與剩餘頻率誤差,還能達到子載波間距與符號持續時間的分數級精度。模擬結果證實了此方法的有效性。
For rapid deployment, Internet of Things (IoT) technology operating in nonterrestrial networks (NTNs) usually follows 3GPP specifications. The 3GPP aims to establish unified specifications for global narrowband IoT (NB-IoT) operations. This article investigates a unified random access (RA) process for an NB-IoT protocol seamlessly operating between NTNs and terrestrial networks without global navigation satellite system (GNSS) connectivity. For high accuracy and backward compatibility, the common Doppler shift is employed for preand post-compensations at a narrowband physical RA channel (NPRACH) receiver; meanwhile, a common propagation delay is employed for pretime advance (Pre-TA) and RA opportunity (RAO) postponement at the NPRACH receiver on the satellite. This study proposes a rake receiver to convey a bank of symbol-level correlators (SLCs) on each arm for joint maximum likelihood estimation (JMLE) of residual frequency error (RFE) and residual time error (RTE) after narrowband physical random access channel (NPRACH) preamble detection is completed. The proposed technique exploits multi-rate signal processing to decimate (i.e., downsample) the received signal for reducing subsequent computational complexity and to interpolate (i.e., upsample) in the frequency domain to enhance the accuracy of RFE estimation. Coherent accumulation of the squared magnitudes of SLC outputs further improves the signal-to-interferenceplus-noise ratio (SINR). The proposed approach offers flexibility and practicality, enabling highly accurate estimation of RFE and RTE over extended ranges beyond one subcarrier spacing and beyond one symbol duration, respectively, while achieving precision at the fractional levels of a subcarrier spacing and a symbol duration. Simulation results confirm effectiveness of the proposed technique.
[1] “3rd generation partnership project; technical specification group radio access network; study on new radio (NR) to support non-terrestrial networks (NTN); (Release 15), Version 15.1.0,” 3GPP, Sophia Antipolis, France, Rep. TR 38.811, Jun. 2019.
[2] “3rd generation partnership project; technical specification group radio access network; solutions for NR to support non-terrestrial networks (NTN); (Release 16), Version 16.0.0,” 3GPP, Sophia Antipolis, France, Rep. TR 38.821, Dec. 2019.
[3] "Solutions for NR to support non-terrestrial networks (NTN),” 3GPP, Gothenberg, Sweden, document TSG RAN WG1 Meeting #86, 3GPP RP-193144, Dec. 2019.
[4] "New study WID on NB-IoT/eMTC support for NTN,” 3GPP, Gothenberg, Sweden, document TSG RAN WG1 Meeting #86, 3GPP RP-193235, Dec. 2019.
[5] M. Kanj, V. Savaux, and M. L. Guen, “A tutorial on NB-IoT physical layer design,” IEEE Commun. Surveys Tuts., vol. 22, no. 4, pp. 2408–2446, 4th Quart., 2020.
[6] W. S. Jeon, S. B. Seo, and D. G. Jeong, “Effective frequency hopping pattern for ToA estimation in NB-IoT random access,” IEEE Trans. Veh. Technol., vol. 67, no. 10, pp. 10150–10154, Oct. 2018.
[7] R. Harwahyu, R.-G. Cheng, C.-H. Wei, and R. F. Sari, “Optimization of random access channel in NB-IoT,” IEEE Internet Things J., vol. 5, no. 1, pp. 391–402, Feb. 2018.
[8] X. Lin, A. Adhikary, and Y.-P. E. Wang, “Random access preamble design and detection for 3GPP narrowband IoT systems,” IEEE Wireless Commun. Lett., vol. 5, no. 6, pp. 640–643, Dec. 2016.
[9] S. Cho, H. Kim, and G. Jo, “Determination of optimum threshold values for NPRACH preamble detection in NB-IoT system,” in Proc. 10th Int. Conf. Ubiquitous Future Netw. (ICUFN), 2018, pp. 616–618.
[10] J.-K. Hwang, C.-F. Li, and C. Ma, “Efficient detection and synchronization of superimposed NB-IoT NPRACH preambles,” IEEE Internet Things J., vol. 6, no. 1, pp. 1173–1182, Feb. 2019.
[11] Q. Wu, P. Wu, W. Wen, T. Yang, and M. Xia, “An efficient NPRACH receiver design for NB-IoT systems,” IEEE Internet Things J., vol. 7, no. 10, pp. 10418–10426, Oct. 2020.
[12] F. Aoudia, J. Hoydis, S. Cammerer, M. Van Keirsbilck, and A. Keller, “Deep learning-based synchronization for uplink NB-IoT,” in Proc. IEEE Glob. Commun. Conf. (GLOBECOM), 2022, pp. 1478–1483.
[13] Y. R. Kumar and N. M. Balasubramanya, “Deep learning based random access preamble detection for 3GPP NB-IoT systems,” in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), 2022, pp. 1689–1694.
[14] H. Chougrani, S. Kisseleff, and S. Chatzinotas, “Efficient preamble detection and time-of-arrival estimation for single-tone frequency hopping random access in NB-IoT,” IEEE Internet Things J., vol. 8, no. 9, pp. 7437–7449, May 2021.
[15] J.-C. Lin, “NB-IoT physical random access channels (NPRACHs) with intercarrier interference (ICI) reduction,” IEEE Internet Things J., vol. 11, no. 3, pp. 5427–5438, Feb. 2024.
[16] X. Liu and D. Gokhale, “GNSS-independent acquisition for NTN NBIoT,” in Proc. 39th Int. Commun. Satell. Syst. Conf. (ICSSC), 2022, pp. 164–168.
[17] O. Kodheli et al., “Random access procedure over non-terrestrial networks: From theory to practice,” IEEE Access, vol. 9, pp. 109130–109143, 2021.
[18] H. Chougrani, S. Kisseleff, W. A. Martins, and S. Chatzinotas, “NBIoT random access for nonterrestrial networks: Preamble detection and uplink synchronization,” IEEE Internet Things J., vol. 9, no. 16, pp. 14913–14927, Aug. 2022.
[19] J.-C. Lin, “Synchronization requirements for 5G: An overview of standards and specifications for cellular networks,” IEEE Vehic. Technol. Mag., vol. 13, no. 3, pp. 91–99, Sep. 2018.
[20] Z. Zhou, N. Accettura, R. Prévost, and P. Berthou, “Lightweight synchronization to NB-IoT enabled LEO satellites through Doppler prediction,” in Proc. 19th Int. Conf. Wireless Mobile Comput., Netw. Commun. (WiMob), 2023, pp. 218–223.
[21] Y. Xu, J. Jiang, D. He, and W. Zhang, “A NB-IoT random access scheme based on change point detection in NTNs,” IEEE Open J. Commun. Soc., vol. 4, pp. 2176–2185, 2023.
[22] “A unified random access procedure for an NB-IoT protocol in nonterrestrial and terrestrial networks,” IEEE Internet of Things J., vol. 12, no. 3, pp. 3424–3440, Feb. 2025.
[23] A. Guidotti, A. Vanelli-Coralli, A. Mengali, and S. Cioni, “Nonterrestrial networks: Link budget analysis,” in Proc. IEEE Int. Conf. (ICC), 2020, pp. 1–7.
[24] “Beam size computation and alternative satellite specifications,” 3GPP, Gothenberg, Sweden, document TSG RAN WG1 Meeting #97, 3GPP R1-1907481, May 2019.
[25] C. A. Pickover, The Math Book: From Pythagoras to the 57th Dimension, 250 Milestones in the History of Mathematics. New York, NY, USA: Sterling Publ. Co., 2009.
[26] “Discussion on doppler compensation, timing advance and RACH for NTN,” 3GPP, Gothenberg, Sweden, document TSG RAN WG1 Meeting #98, 3GPP R1-1908049, Aug. 2019.
[27] “3rd generation partnership project; technical specification group radio access network; study on new radio (NR) to support non-terrestrial networks (NTN), (Release 15), Version 0.1.0,” 3GPP, Sophia Antipolis, France, Rep. TR 38.811, Jun. 2017.
[28] “Differentially coherent PN code acquisition with full-period correlation
in chip-synchronous DS/SS receivers,” IEEE Trans. Commun.,
vol. 50, pp. 698–702, May 2002.
[29] “Differentially coherent PN code acquisition based on a matched
filter for chip-asynchronous DS/SS communications,” IEEE Trans. Veh.
Technol., vol. 51, pp. 1596–1599, Nov. 2002.
[30] J. G. Proakis and M. Salehi, Digital Communications. 5th ed., McGraw-
Hill, 2008.
[31] J.-C. Lin, Y.-T. Sun, and H. V. Poor, “Initial synchronization exploiting inherent diversity for the LTE sector search process,” IEEE Trans. Wireless Commun., vol. 15, no. 2, pp. 1114–1128, Feb. 2016.