跳到主要內容

簡易檢索 / 詳目顯示

研究生: 廖鈞妙
Jun-Miao Liao
論文名稱: 非線性守恆律中擊波解之非守恆積分的不穩定性
Instability of Non-Conservative Product to Shock Wave Solutions of Scalar Balance Laws With Singular Source Terms
指導教授: 洪盟凱
Meng-Kai Hong
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 37
中文關鍵詞: 非線性守恆律擊波解非守恆積分不穩定性
外文關鍵詞: Non-Conservative Product, Shock Wave Solutions, Singular Source Terms, Scalar Balance Laws
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇論文中,我們考慮單一非線性守恆律的廣義黎曼問題解,
    此一守恆律的源項在分佈理論中是奇異的,
    代表它是delta函數和非連續函數的乘積。在這篇論文中,
    我們將展示一個例子去證明此守恆律中的非守恆乘積是不穩定的。
    也就是它的正則型式的積分有不同的值。當解帶有震波時,它們的值取決於震波正則模式的選取。


    In this thesis, we consider the generalized Riemann solutions of scalar nonlinear balance laws
    with singular source terms. The source term is singular in the
    sense that it is a product of delta function and a discontinuous
    function, which is undefined in distribution. We demonstrate an example to show
    that the non-conservative product $a'g(u)$ is unstable in the sense that the integral of
    regularization $a_{\varepsilon}'g(u_{\varepsilon})$ for $a'g(u)$ may have multiple values due to the forms $a_\varepsilon$, $u_\varepsilon$ when $u$ consists of shocks.

    Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Generalized Riemann Solutions and Their Regularization . . . . . . . . 4 3 Instability of Non-conservative Product . . . . . . . . . . . . . . . . . . . 11 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

    [1] Yuan Chang, Shih-Wei Chou, John M. Hong and Ying-Chieh Lin, Existence and
    uniqueness of Lax-type solutions to the Riemann problem of scalar balance law with
    singular source term, Taiwanese J. Math. 17 (2013), no. 2, pp. 431-464.

    [2] C. Dafermos, Generalized characteristics and the structure of solutions of hyperbolic
    conservation laws, Ind. Univ. Math. J. 26 (1977), pp. 1097-1119.

    [3] C. Dafermos, Solutions of the Riemann problem for a class of conservation laws by
    the viscosity method, Arch. Ration. Mech. Anal., 52 (1973), pp. 1-9.

    [4] C. Dafermos and L. Hsiao, Hyperbolic systems of balance laws with inhomogeneity
    and dissipation, Indiana U. Math. Journal, 31, No. 4 (1982), pp. 471-491.

    [5] G. Dal Maso, P. LeFloch and F. Murat, Definition and weak stability of nonconser-
    vative products, J. Math. Pure. Appl., 74 (1995), pp. 483-548.

    [6] Ronald J. DiPerna, Measure-Valued Solutions to Conservation Laws, Arch. Ration.
    Mech. Anal., 88 , No. 3 (1985), pp. 223-270.

    [7] J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations,
    Comm. Pure Appl. Math., 18 (1965), pp. 697-715.

    [8] J. M. Hong, An extension of Glimm’s method to inhomogeneous strictly hyperbolic
    systems of conservation laws by ”weaker than weak” solutions of the Riemann prob-
    lem, J. Diff. Equations, 222 (2006), pp. 515-549.

    [9] J. M. Hong and B. Temple, A Bound on the Total Variation of the Conserved Quan-
    tities for Solutions of a General Resonant Nonlinear Balance Law, SIAM J. Appl.
    Math. 64, No. 3 (2004), pp. 819-857.

    [10] J. M. Hong and P. G. LeFloch, A version of Glimm method based on generalized
    Riemann problem, Portugaliae Mathematica 64, Fasc. 2 (2007), pp. 199-236.
    [11] E. Isaacson and B. Temple, Convergence of 2 × 2 by Godunov method for a general
    resonant nonlinear balance law, SIAM J. Appl. Math. 55 (1995), pp. 625-640.

    [12] K. T. Joseph and P. G. LeFloch, Singular limits for the Riemann problem: gen-
    eral diffusion, relaxation, and boundary condition, in ” new analytical approach to
    multidimensional balance laws”, O. Rozanova ed., Nova Press, 2004.

    [13] S. Kruzkov, First order quasilinear equations with several space variables, Math.
    USSR Sbornik, 10 (1970), pp. 217-243.

    [14] P. D. Lax, Hyperbolic system of conservation laws, II, Comm. Pure Appl. Math., 10
    (1957), pp. 537-566.

    [15] P. G. LeFloch, Entropy weak solutions to nonlinear hyperbolic systems under non-
    conservative form, Comm. Partial Differential Equations, 13 (1988), pp. 669-727.

    [16] T. P. Liu, The Riemann problem for general systems of conservation laws, J. Diff.
    Equations, 18 (1975), pp. 218-234.

    [17] T. P. Liu, Quaslinear hyperbolic systems, Comm. Math. Phys., 68 (1979), pp. 141-
    172.

    [18] C. Mascia and C. Sinestrari, The perturbed Riemann problem for a balance law,
    Advances in Differential Equations, 2 (1997), pp. 779-810.

    [19] O. A. Oleinik, Discontinuous solutions of nonlinear differential equations, Amer.
    Math. Soc. Transl. Ser. 2, 26 (1957), pp. 95-172.

    [20] C. Sinestrari, The Riemann problem for an inhomogeneous conservation law without
    convexity, Siam J. Math. Anal., 28, No. 1, (1997), pp. 109-135.

    [21] C. Sinestrari, Asymptotic profile of solutions of conservation laws with source, Diff.
    and Integral Equations, 9, No. 3, (1996), pp. 499-525.

    [22] J. Smoller, Shock waves and reaction-dffusion equations, Springer, New York, 1983.

    [23] A. Tzavaras, Waves interactions and variation estimates for self-similar zero viscosity
    limits in systems of conservation laws, Arch. Ration. Mech. Anal., 135 (1996), pp.
    1-60.

    [24] A. Volpert, The space BV and quasilinear equations, Maths. USSR Sbornik 2 (1967),
    pp. 225-267.

    QR CODE
    :::