跳到主要內容

簡易檢索 / 詳目顯示

研究生: 劉家豪
Jia-Hao Liu
論文名稱: 高靈敏度之滑輪式環型共振腔表面電漿共振感測器
Highly Sensitive Surface Plasmon Resonance Sensor With Pulley-Type Ring Resonator
指導教授: 陳啟昌
Chii-Chang Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 58
中文關鍵詞: 環型共振腔波導耦合表面電漿共振生醫感測器靈敏度
外文關鍵詞: ring resonator, waveguide coupling, surface plasmon resonance, biomedical sensor, sensitivity
相關次數: 點閱:22下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文中使用滑輪式環型共振腔(Pulley-type ring resonator),環的材料為金(Au),以波導耦合來產生表面電漿共振,利用表面電漿對折射率變化特別敏感的特性來作為生醫感測器。以有限時域差分法(Finite-Difference Time-Domain Method, FDTD)來模擬電磁波在共振腔中傳播情形,並改變環半徑的大小來觀察靈敏度變化的情形。本論文中所研究之元件的靈敏度可高達602.6nm/RIU。


    In this study, we study the pulley type ring resonator with the gold ring to produce surface plasmon resonance by waveguide coupling. Since the generation of the surface plasmon is particularly sensitive to the change in the refractive index, the device can be served as a biomedical sensor. The finite-difference time-domain method (FDTD) is used to solve the Maxwell’s equations to evaluate the performance of the device.
    The electromagnetic field distribution (EMF) inside and outside the ring resonator can be calculated by the FDTD method. By changing the ring radius, we investigate the device sensitivity. In this work, the sensitivity can be as high as 602.6nm / RIU.

    目錄 摘要 I Abstract II 目錄 III 圖目錄 V 表目錄 VII 第一章 簡介 1.1 光學共振腔簡介 1 1.2 環型共振腔發展回顧 2 1.3 研究動機 11 1.4 論文架構 12 1.5 結論 12 第二章 理論分析 2.1 表面電漿共振原理 15 2.2 有限時域差分法(FDTD) 20 2.3 局部表面電漿共振(LSPR)公式 23 2.3.1 微擾理論 (General perturbation theory) 23 2.3.2 準靜態限制(Quasistatic limit) 25 2.4 結論 28 第三章 靈敏度分析 3.1 環型共振腔之設計 30 3.2 不同半徑環型共振腔之靈敏度比較 31 3.3 結論 39 第四章 結論與未來工作 4.1 本論文總結 40 4.2 未來工作 41 參考文獻 43

    [1] C. Manolatou, “Passive components for dense optical integration based on high index-contrast,” Ph.D. Thesis MIT EECS (2001).
    [2] T. J. Yen and Y. C. Lai, “A plasmonic biosensor demonstrates high sensitivity and long-distance detection,” Proc. SPIE (2011).
    [3] X. Li, Z. Zhang, S. Qin, Tao Wang, F. Liu, M. Qiu, and Y. Su, “Sensitive label-free and compact biosensor based on concentric silicon-on-insulator microring resonators, ” Appl. Opt. 48, F90 (2009).
    [4] X. Jiang, J. Ye, J. Zou, M. Li, and J. J. He, “Cascaded silicon-on-insulator double-ring sensors operating in high-sensitivity transverse-magnetic mode,” Opt. Lett. 38, 1349 (2013).
    [5] T. Wu, Y. Liu, Z. Yu, Y. Peng, C. Shu, and H. Ye, “The sensing characteristics of plasmonic waveguide with a ring resonator,” Opt. Express 22, 7669 (2014).
    [6] M. T. M. Mujahid, W. W. Ahmed and M. A. Alsunaidi, “ Sensing Properties of Plasmonic Ring Resonators,” SIECPC (2013).
    [7] K. Q. Le and P. Bienstman, “Nanoplasmonic ring resonator for biosensing applications,” 15th Annual Symposium of the IEEE Photonics Benelux Chapter (2011).
    [8] K. D. Vos, I. Bartolozzi, E. Schacht, P. Bienstman1, R. Baets1, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15, 7802 (2007).
    [9] T. Claes, J. G. Molera, K. D. Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-Free Biosensing With a Slot-Waveguide-Based Ring Resonator in Silicon on Insulator,” Photonics 1, 197 (2009).
    [10] S. Malathi,U. Raghunath, T. Srinivas, “Ultra-compact SOI micro rings for sensing applications,” Photonics Global Conference (2010).
    [11] M. Sumetsky, R. S. Windeler, Y. Dulashko, and X. Fan, “Optical liquid ring resonator sensor,” Opt. Express 15, 14376 (2007).
    [12] G. Y. Oh, D. G. Kim, S. H. Kim, H. C. Ki “Integrated Refractometric Sensor Utilizing a Triangular Ring Resonator Combined With SPR,” Photon. Technol. Lett. 26, 2189 (2014).
    [13] L. Jin, M. Li , J. J. He, “Highly-sensitive silicon-on-insulator sensor based on two cascaded micro-ring resonators with vernier effect,” Optics Commun. 284, 156 (2011).
    [14] G. Huang, V. A. B. Quinones, F. Ding, S. Kiravittaya, Y. Mei, and O. G. Schmidt, “Rolled-Up Optical Microcavities with Subwavelength Wall Thicknesses for Enhanced Liquid Sensing Applications,” ACS Nano 4, 3123 (2010).
    [15] V. Zamora, A. Díez, M. V. Andrés and B. Gimeno, “Refractometric sensor based on whisperinggallery modes of thin capillaries,” Opt. Express 15, 12011 (2007).
    [16] T. Ling, and L. J. Guo, “A unique resonance mode observed in a prismcoupled micro-tube resonator sensor with superior index sensitivity,” Opt. Express 15, 17425 (2007).
    [17] Q. F. Zhu, “A simplified cytocentrifuge and its clinical application,” Journal of Tongji Medical University 6, 256 (1986).
    [18] R. W. Wood, “Uneven disribution of light in a diffraction grating spectrum,” Proc. Phys. Soc. London 18, 269 (1902).
    [19] R. H. Ritchie, “Plasma Losses by fast electrons in thin films,” Phys. Rev. 106, 874 (1957).
    [20] C. J. Powell, and J. B. Swan, “ Origin of the Characteristic Electron Energy Losses in Magnesium,” Phys. Rev. 116, 81 (1959).
    [21] B. Liedberg, C. Nylander, I. Lundstroem, “Surface plasmon resonance for gas detection and biosensing,” Sensors and Actuator 4, 299, (1983).
    [22] H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill,“Time-independent perturbation for leaking electromagnetic modes in open systems with application to resonances in microdroplets,” Phys. Rev. A, 41 5187 (2009).
    [23] V. K. Lin, S. L. Teo, R. Marty, A. Arbouet ,C. Girard, E. A. Llado, S. H. Liu, M. Y. Han, S. Tripathy, and A. Mlayah, “Dual wavelength sensing based on interacting gold nanodisk trimers,” Nanotechnol. 21, 305501 (2010).
    [24] S. L. Teo, V. K. Lin, R. Marty, N. Large, E. A. Llado, A. Arbouet, C. Girard, J. Aizpurua, S. Tripathy, and A. Mlayah, “Gold nanoring trimers: a versatile structure for infrared sensing,” Opt. Express 18, 22271 (2010).
    [25] A. D. Leebeeck, L. K. S. Kumar, V. D. Lange, D. Sinton, R. Gordon, and A. G. Brolo,“On-Chip Surface-Based Detection with Nanohole,” Arrays Anal. Chem. 79, 4094 (2007).
    [26] S. W. Lee, K. S. Lee, J. Ahn, J. J. Lee, M. G. Kim, and Y. B. ShinHighly,“Sensitive Biosensing Using Arrays of Plasmonic Au Nanodisks Realized by Nanoimprint Lithography,” ACS Nano 5, 897 (2011).
    [27] E. M. Larsson, J. Alegret, M. Kall, and D. S. Sutherland,“Sensing Characteristics of NIR Localized Surface Plasmon Resonances in Gold Nanorings for Application as Ultrasensitive Biosensors,” Nano Lett. 7, 1256 (2007).
    [28] C. Y. Tsai, S. P. Lu, J. W. Lin, and P. T. Lee,“High sensitivity plasmonic index sensor using slablike gold nanoring arrays,” Appl. Phys. Lett. 98, 153108 (2011).
    [29] C. R. Yonzon, E. Jeoung, S. Zou, G. C. Schatz, M. Mrksich, and R. P. Van Duyne,“A Comparative Analysis of Localized and Propagating Surface Plasmon Resonance Sensors: The Binding of Concanavalin A to a Monosaccharide Functionalized Self-Assembled Monolayer,” J. Am. Chem. Soc. 126, 12669 (2004).
    [30] RSoft Inc., “FullWAVE3.0.1 User Guide,”
    [31] E. F. Franchimon, K. R. Hiremath, R. Stoffer , M. Hammer, “Interaction of whispering gallery modes in integrated optical micro-ring or -disk circuits: Hybrid CMT model,” Opt. Soc. Am. B 30,1048 (2013).
    [32] L. Petit, N. Carlie, B. Zdyrko, I. Luzinov, and K. Richardson,“Development of novel integrated bio/chemical sensor systems using chalcogenide glass materials,” Int. J. Nanotechnol. 6, 799 (2009).
    [33] W. L. Barnes, A. Dereux, and T. W. Ebbesen,“Surface Plasmon subwavelength optics,” Nature 424, 14 (2003).
    [34] A. Haddadpour, and Y. Yi,“Metallic nanoparticle on micro ring resonator for bio optical detection and sensing,” Biomed. Opt. Express 1, 378 (2010).
    [35] F. Xu, V. Pruneri, V. Finazzi, and G. Brambilla,“An embedded optical nanowire loop resonator refractometric sensor,” Opt. Express 16, 1062 (2008).
    [36] X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, Y. Sun,“Sensitive optical biosensors for unlabeled targets: A review,” Analytica Chimica Acta 620, 8 (2008).
    [37] J. Tao, Q. J. Wang, X. G. Huang, “All-Optical Plasmonic Switches Based on Coupled Nano-disk Cavity Structures Containing Nonlinear Material,” Plasmonics 6, 753 (2011).
    [38] T. Ling, and L. J. Guo,“A unique resonance mode observed in a prismcoupled micro-tube resonator sensor with superior index sensitivity,” Opt. Express 15,17424 (2007).
    [39] V. Zamora, A. Díez, M. V. Andrés, and B. Gimeno “Refractometric sensor based on whisperinggallery modes of thin capillaries,” Opt. Express 15,12011 (2007).
    [40] G. Huang, V. A. B. Quinones, F. Ding, S. Kiravittaya, Y. Mei, and O. G. Schmidt,“Rolled-Up Optical Microcavities with Subwavelength Wall Thicknesses for Enhanced Liquid Sensing Applications,” ACS Nano 4 (6), 3123 (2010).
    [41] M. Chamanzar, M. Soltani, B. Momeni, S. Yegnanarayanan, A. Adibi, “Hybrid photonic surface-plasmon-polariton ring resonators for sensing applications,” Appl. Phys. B 101, 263 (2010).
    [42] Q. Zhang, X. Wen, G. Li, Q. Ruan, J. Wang, and Q. Xiong,“Multiple Magnetic Mode-Based Fano Resonance in Split-Ring Resonator Disk Nanocavities,” ACS Nano 7, 11071 (2013).
    [43] B. Lahiri, A. Z. Khokhar, R. M. D. L. Rue, S. G. McMeekin, and N. P. Johnson,“Asymmetric split ring resonators for optical sensing of organic materials,” Opt. Express 17, 1107 (2009).
    [44] J. Homola,“Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377, 528 (2003)
    [45] A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: a comprehensive review,” IEEE Sensors Journal 7, 1118 (2007).
    [46] W. Wang, Y. Li, J. Peng, Z. Chen, J. Qian, J. Chen, J. Xu, and Q. Sun, “Polarization dependent Fano resonance in a metallic triangle embedded in split ring plasmonic nanostructures,” J. Opt. 16, 035002 (2014).
    [47] M. Fleischmann, P.J. Hendra, and A. J. Mcquillan, “Raman spectra of pyridzne adsorbed at a silver electrode,” Chem. Phy. Lett. 26, 163 (1974).
    [48] D. L. Jeanmaire, R. P. V. Duyne, “Surface Raman spectroelectrochemistry,” J. Electroanal. Chem. 84, 1 (1977).
    [49] C. Wen, K. Ishikawa, M. Kishima, K. Yamada, “Effects of silver particles on the photovoltaic properties of dye-sensitized TiO2 thin films,” Solar Energy Materials and Solar Cells 61, 339 (2000).
    [50] J. Cao, E. K. Galbraith, T. Sun, and K. T. V. Grattan, “Comparison of Surface Plasmon Resonance and Localized Surface Plasmon Resonance-based optical fibre sensors,” J. Phy. : Conf. Ser. 307, 012050 (2011).
    [51] M. Svedendahl, S. Chen, A. Dmitriev, and M. Käll,“Refractometric sensing using propagating versus localized surface plasmons: a direct comparison,” Nano Lett. 9, 4428 (2009).
    [52] Q. Liu, Z.-M Qi, Z. Zhang, and D.-F. Lu “The oretical and experimental investigation of ultrahigh sensitivity of wavelength-interrogated infrared surface plasmon resonance sensors,” Solid-state sensors, actuators and microsystems conference (transducers), 16th international (2011).
    [53] C. Bohen, D. Huffman, “Absorption and scatteing of light by small particles,” Wiley, New York (1983).
    [54] S. J. Zalyubovskiy, M. Bogdanova, A. Deinega, Y. Lozovik, A. D. Pris,K. H. An, W. P. Hall, and R. A. Potyrailo, “Theoretical limit of localized surface plasmon resonance sensitivity to local refractive index change and its comparison to conventional surface Plasmon resonance sensor,” Opt. Soc. Am. 29, 994 (2012).
    [55] L. Bi, J. Hu, L. Kimerling, and C. A. Ross, “Fabrication and characterization of As2S3/Y3Fe5O12 and Y3Fe5O12/SOI strip-loaded waveguides for integrated optical isolator applications,” Proc. of SPIE 7604 ,760406-10 (2010).

    QR CODE
    :::