跳到主要內容

簡易檢索 / 詳目顯示

研究生: 湯智超
Chih-Chao Tang
論文名稱: 兩板間黏著叢集的強度
The strength of an adhesion cluster between two plates
指導教授: 陳宣毅
Hsuan-Yi Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 生物物理研究所
Graduate Institute of Biophysics
畢業學年度: 95
語文別: 英文
論文頁數: 38
中文關鍵詞: 叢集黏著強度
外文關鍵詞: cluster, adhesion
相關次數: 點閱:6下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們提出了一個理論模型來描述配體-受體叢集的生命期
    T( f , Nt )與叢集大小Nt、外力F 的關係,這裡f = F/Nt 為每
    一配體-受體對所受之力。此叢集是由Nt 個平行的配體受體
    對所組成。由反應速率方程式我們找到一個叢集的特徵力
    fc ,我們由不同外力下的蒙地卡羅模擬發現(1)當f >fc 時,
    叢集生命期與叢集大小無關。這是由於在反應速率方程式
    中,鍵結數目在叢集中所佔比例的衰變與叢集大小無關,而
    與f 有關。(2)當f =fc 時,生命期與叢集大小有冪次關係
    lnT~lnNt。為了解釋此結果我們引入等效自由能G,則一叢
    集的斷裂過程可以用一假想粒子在位能G 下的運動來描
    述。在f =fc 時,G 有個反曲點,且叢集生命期大多都花在反
    曲點附近的區域上,由標度分析可得lnT~lnNt。(3)當f <fc 時
    我們得到lnT~Nt,此時G 在Nb 空間中有一個井,所以叢集
    生命期大約是此粒子跨越此井所需要的時間,利用Kramers
    粒子脫離率定律可得lnT~ Nt。我們的研究證明了只要配體受
    體對的斷裂率以及重新鍵結率是f 與叢集鍵結比例的函數,
    則都可以得到以上的三種關係。


    We present a theoretical model to study the lifetime T(Nt, f) of an adhesion
    cluster under external force F, where Nt is the cluster size and f = F/Nt. The
    cluster is composed of Nt parallel ligand-receptor pairs. We find a character-
    istic force fc predicted by the rate equation. By Monte Carlo simulation, we
    show (i) When f > fc, T is independent of Nt. This can be explained by the
    rate equation which predicts that the fraction of connected ligand-receptor
    pairs nb(t) depends on f, but not on Nt. (ii)When f = fc, lnT(Nt, f) ∼ lnNt.
    To explain the result we construct the effective free energy G and treat the
    force pulling process as a particle moving under G in Nb space. G(f = fc)
    has a flat region where the particle spends most of its lifetime to cross it.
    By estimating the width of the flat region with dimensional analysis, we find
    lnT(Nt, f) ∼ lnNt. (iii) When f < fc regime, lnT(Nt, f) ∼ Nt because
    G(f < fc) has a barrier with barrier height ∼ Nt and lifetime T comes from
    the barrier crossing time of the particle, as a result lnT(Nt, f) ∼ Nt. Finally
    we show that the above three relations exist as long as the rebinding and
    unbinding rates are functions of f and nb.

    1 Introduction 1 2 Background and Model 6 2.1 Smoluchowski equation . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Kramers’ theory . . . . . . . . . . . . . . . . . . . . . . . 9 2.3 Our Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.4 Master Equation and Rate equation . . . . . . . . . . . . . . . 14 3 Simulation and Results 19 3.1 Monte Carlo Simulation . . . . . . . . . . . . . . . . . . . . . 19 3.1.1 Gillespie Algorithm . . . . . . . . . . . . . . . . . . . . 19 3.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . 21 3.2.1 T(Nt, f > fc) . . . . . . . . . . . . . . . . . . . . . . . 22 3.2.2 T(Nt, f = fc) and Effective free energy G . . . . . . . . 22 3.2.3 T(Nt, f < fc) . . . . . . . . . . . . . . . . . . . . . . . 27 4 Conclusion 33 Bibliography 36

    [1] D. A. Lauffenburger and A. F. Horwitz, Cell 84, 359 (1996).
    [2] J. Y. Shao and R. M. Hochmuth, Biophys. J. 71, 2892 (1996).
    [3] G. U. Lee, D. A. Kidwell, and R. J. Colton, Langmuir, 10, 354-357
    (1994).
    [4] P. P. Lehenkari and M. A. Horton, Biochem. Biophys. Res. Commun.
    259, 645-650 (1999).
    [5] T. Nishizaka, H. Miyata, H. Yshikawa, S. Ishiwata, and K. Kinosita,
    Nature(London) 377, 251 (1995).
    [6] G. I. Bell, Science 200, 618 (1978).
    [7] T. Erdmann and U. S. Schwarz, Phys. Rev. Lett., 92, 108102 (2004).
    [8] E. Evans and K. Ritchie, Biophys. J. 76, 2439 (1999).
    [9] U. Seifert, Phys. Rev. Lett. 84, 2750 (2000).
    [10] H. A. Kramers, Physica (Amsterdam) 7, 284 (1940).
    [11] M. Doi and S. F. Edwards, The Theory of Polymer Dynamics. (Claren-
    don, Oxford, 1986).
    [12] A. Einstein, Ann. Physik 17,549 (1905) and 19, 371 (1906).
    [13] N. G. van Kampen, Stochastic Processes in Physics and Chemistry (El-
    sevier, Amsterdam, 1992).
    [14] D. T. Gillespie, J. Phys. Chem. 81, 2340 (1977).
    [15] K. Prechtel, A. R. Bausch, V. Marchi-Artzner, M. Kantlehner, H.
    Kessler, and R. Merkel, Phys. Rev. Lett., 89, 028101 (2002).
    38

    QR CODE
    :::