| 研究生: |
簡渾淇 Huen-Chi Jian |
|---|---|
| 論文名稱: | The Building of UHV System with the Molecular Beam, IRAS, and TPD |
| 指導教授: |
羅夢凡
Meng-Fan Luo |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 分子束 、反射式吸收紅外光譜儀 、熱脫附質譜術 、甲醇分解 |
| 外文關鍵詞: | molecular beam, IRAS, TPD, methanol decomposition |
| 相關次數: | 點閱:6 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們建立一套超高真空系統,其中包含三項實驗技術: 分子束、反射式紅外光譜吸收儀、熱脫附質譜術,這些實驗技術在表面科學上是有用的工具可以研究催化反應過程。我們的設計包括:主腔體、分子束的反應腔體、紅外光路徑腔體。
除了系統架設外,我們利用此系統研究甲醇在鉑單晶上實際時間上的分解反應,在溫度500 K及甲醇曝量在高氣壓狀態(2×10-7- 4×10-7 托耳),利用我們的熱脫附質譜圖與之前Stuve等人所做的文獻比較之下,我們推測因甲醇分解所產生的一氧化碳比較容易累積在鉑表面上而造成一氧化碳的脫附量增加,而存留在表面的一氧化碳也會使甲醇分解效率降低。另外我們利用氧分子束與甲醇分解反應在溫度480 K下作用,發現氧分子不會與鉑反應分解形成氧原子。
We built an ultrahigh vacuum system with molecular beam, infrared reflection absorption spectroscopy (IRAS), and temperature programmed desorption (TPD). These techniques are useful tools to study reaction dynamics in surface science. Our designs include a main chamber, a QMS chamber for molecular beam, and IR chambers. We investigated the real-time catalyzed methanol decomposition on single crystal Pt(100) surface. At 500 K and at high pressure (2×10-7 - 4×10-7 Torr), we compare our TPD results to the previous study by Stuve et al. which suggests that the produced CO accumulated on Pt(100) surface in the reactions. The accumulated CO continued to desorb during the exposure to methanol, leading to increase of desorbing CO. The remained CO decreases the probability of methanol decomposition. The O2 molecules refuse to dissociate into O atoms on Pt (100) at 480 K according to the experiments of methanol decomposition with O2 molecular beams.
References of Chapter 1
[1] G.Ertl, H.Knoezi nger, J.Weitkamp, in Handbook of Heterogeneous Catalysis,
Wiley-VCH, Weinheim, 1997.
[2] J. Heveling, J. Chem. Educ. 2012, 89, 1530−1536
[3] J.Libuda, Chem. Phys. Chem. 2004, 5, 625-631
[4] D. Wayne Goodman, Chem. Rev. 1995, 95, 523-536
[5] Sandra M. Lang, Thorsten M. Bernhardt, Phys. Chem. Chem. Phys., 2012, 14, 9255–9269
References of Chapter 2
[1] G. Ertl in Catalysis: Science and Technology, J. R. Anderson and M. Boudart,
Eds., vol. 4, Springer-Verlag, Berlin, 1983, p. 245.
[2] G.Ertl, H.Knoezi nger, J.Weitkamp, in Handbook of Heterogeneous Catalysis,
Wiley-VCH, Weinheim, 1997.
[3] J.Libuda, Molecular Beams and Model Catalysis: Activity and Selectivity of
Specific Reaction Centers on Supported Nanoparticles, ChemPhysChem 2004, 5, 625-631
[4] A.V. Walker, D.A. King, Surface Science 444 (2000) 1–6
[5] M. Valden, N. Xiang, J. Pere, M. Pessa, Appl. Surf. Sci. 99 (1996) 83.
[6] Heilmann, K. Heinz, and K. Muller, Surf. Sci. 83, 487 (1979).
[7] R. Imbihl, in: Optimal Structures in Heterogeneous Reaction Systems,
Ed. P.J. Plath, Springer, Berlin (1989) p. 26 and references therein.
[8] A. Barteau, E. 1. Ko, and R. J. Madix, Surf. Sci. 102, 99 (1981).
[9] P. Gardner, R. Martin, M. Tdshaus and A. M. Bradshaw, The adsorbate-induced lifting of the Pt(100) surface reconstruction: IRAS investigations, Journal of Electron Spectroscopy and Related Phenomena, 54155 (1990) 619-628
[10] N. Kizhakevariam and E.M. Stuve, Surf. Sci. 286, 246 (1993)
[11] P.R. Norton, J.A. Davies, D.K. Creber, C.W. Sitter andT.E. Jackman, Surf. Sci. 108 (1981) 205.
[12] S. Schauermann, J. Hoffmann, V. Joha´nek, J. Hartmann and J. Libuda, Phys. Chem. Chem. Phys., 2002, 4, 3909-3918
[13] S. Schauermann, J. Hoffmann, V. Johánek, J. Hartmann, J. Libuda, H.-J. Freund, Catalysis Letters Vol. 84, Nos. 3-4 (2002)
References of Chapter 3
[1] Ellaine M. McCash, Surface Chemistry
[2] 真空技術與應用, 行政院國家科學委員會機密儀器發展中心出版, 2001, page 102, figure 6.1
[3] J. Libuda, H.-J. Freund / Surface Science Reports 57 (2005) 157–298
[4] Beijerinck, H. ven Grewen, R., Kerstel, E., Martens, J., van Vliembergen, E., Smits, M., and Kaashoek, G. (1985). Chem. Phys. 96, 153.
[5] Campargue, R. (1984). J. Phys. Chem. 88, 4466.
[6] Elaine M. McCash, Surface Chemistry, Oxford University Press (2001)
[7] Hans Lu ̈th, Surfaces and Interfaces of Solid (2nd), Springer-Verlag (1993)
[8] John B. Hudson, Surface Science: an introduction, J. Wiley & Sons (1998)
[9] Harald Ibach, Physics of Surfaces and Interfaces, Springer-Verlag (2006)
[10] Skoog D.A. et al., Principles of Instrumental Analysis (4th), Saunders College (1992)
[11] P. Hollins and J. Pritchard, Prog. Surf. Sci. 19, 275 (1985)
[12] F. M. Hoffmann, Surf. Sci. Rep. 3, 107 (1982)
[13] A.M. Bradshaw, E. Schweizer, Infrared reflection absorption spectroscopy of adsorbed molecules, in: R.E. Hester(Ed.), Advances in Spectroscopy: Spectroscopy of surfaces, Wiley, New York (1988)
[14] R. G. Greenler, J. Chem. Phys., 44, 310 (1966)
[15] Marcus Ba ̈umer, H.-J. Freund, Progress in Surf. Sci. 61, 127 (1999)
[16] ABB FT-IR reference manual
[17]李冠卿, 近代光學, 聯經出版社 (1988)